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A B S T R A C T

We introduce a novel approach for optimizing Image Signal Processing (ISP) rendering pipelines for night
photography through a Bayesian derivative-free procedure. Traditional neural-network-based ISPs depend
on differentiable operations to enable backpropagation-based optimization, a requirement that can impose
significant constraints. Our method circumvents this by employing Bayesian optimization to fine-tune the
pipeline’s parameters, independently of their differentiability. Additionally, we address the need for paired
data to enable supervised optimization: while such paired data is available on public datasets, it is expensive to
collect for new imaging devices. To this extent, we design a raw-to-raw mapping procedure, that aligns images
from an available paired dataset to the target unpaired dataset. This allows us to supervise the optimization of
our solution directly within the target space, without the need for device-specific paired data. We validate
our approach with extensive experimentation on paired and unpaired datasets, demonstrating its efficacy
using both subjective and objective evaluation metrics. Our code is made available for public download at
https://github.com/TheZino/Bayesian-pipeline-optimization.
1. Introduction

Night photography rendering is a critical yet challenging domain in
image processing. Its significance lies in the ability to capture vivid and
clear images under low-light conditions, a scenario frequently encoun-
tered in various applications ranging from personal photography [1] to
surveillance [2]. However, the complexity of this task arises from the
inherent limitations of capturing high-quality images in the absence of
adequate lighting, often resulting in color distortion, noise, and loss of
detail.

Image Signal Processing (ISP) pipelines play a pivotal role in ad-
dressing these challenges. The concept of a pipeline refers to the
sequence of processing steps that convert raw sensor data from a digital
camera into a final image. This process typically includes several low-
level functions, such as demosaicing, as well as higher-level operations
designed to produce a visually pleasing image while correcting for var-
ious distortions inherent in the capture process. Among these, figures
the adjustment (fixed or adaptive) of image brightness and contrast:
this aspect is crucial, as it directly influences the perceptual quality
of the image, balancing the illumination and enhancing the details
without introducing artifacts.

Different vendors develop unique ISP pipelines [3], each with a set
of parameters fine-tuned to specific imaging conditions. This diversity
highlights the need of optimizing these pipelines for night or low-light
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photography, ensuring that images captured under these conditions are
rendered appropriately. In this paper we design a procedure for the
optimization of ISP pipelines, i.e. for the search of optimal values in
the free parameters of existing pipelines. We design our solution to
be based on derivative-free Bayesian optimization. This is a significant
departure from deep learning methods: although proven effective for
many tasks related to image processing and computer vision, they pose
a limiting requirement of differentiability of the pipeline steps, so that
these can be optimized via gradient backpropagation. By relaxing this
constraint, our approach offers greater flexibility and adaptability in
optimizing ISPs.

Many studies in scientific literature depend on paired data, which
involves using a reference ‘‘high light’’ rendered image to train super-
vised models. However, this dependency can limit the transferability of
the developed rendering pipelines to different devices, as each device
may require its own unique set of paired data for effective training,
which is expensive to collect. To this extent, we introduce an innovative
approach that shifts the need for paired data from the target camera
space to an external source, using a dedicated raw-to-raw mapping
procedure.

The primary problem addressed in this paper is the challenge of
optimizing ISP pipelines for night photography, where low-light con-
ditions result in raw images with poor value distribution, color dis-
tortions, and noise. Current deep learning-based methods impose con-
straints such as the need for differentiable operations (which limit
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the set of possible algorithms that may be integrated in the pipeline)
nd device-specific paired data for supervised optimization (which are

costly and challenging to obtain for new imaging devices). Our leading
objective is therefore to design a flexible, derivative-free Bayesian opti-

ization procedure to fine-tune ISP parameters for night photography
ithout relying on paired data specific to each device. This method
nables the optimization of camera pipelines in low-light conditions

by employing a raw-to-raw mapping procedure, making it adaptable to
ifferent camera sensors and reducing the need for manual intervention
r device-specific data collection.

The main contributions of this paper are:

1. Introducing a Bayesian derivative-free method to optimize ISP
parameters for night photography, suitable for various camera
setups.

2. Employing a raw-to-raw conversion using external paired
datasets, enabling effective ISP optimization.

3. Demonstrating the potential to enhance existing camera ISPs
using external data.

2. Related works

Several studies have adopted the approach of using paired data for
night image processing [4,5]. However, acquiring such data presents a
ignificant cost, and consequently it reduces the applicability of night
endering methods to new imaging devices. An alternative strategy to
he acquisition of paired data involves synthesizing input data from a
lean source combined with a detailed analysis of the distortions that

are characteristic of night imaging setups. For instance, Wei et al. [6]
reate realistic noisy raw data that accurately reflects the physical pro-

cesses behind noise generation. While innovative, this method requires
comprehensive modeling of various aspects of the imaging pipeline,
focusing primarily on noise models, which may limit its applicability
to broader ISP optimizations.

Our work reimagines this modelization approach by exploiting ex-
sting paired data from a third party, adapting its raw images to match
he device-specific raw space of our unpaired domain of interest. This
daptation is inspired by raw-to-raw mapping techniques, which are,
owever traditionally designed to also work with paired data from
he two raw spaces [7,8]. Our methodology, as further detailed in

Section 3, circumvents the limitations of relying on paired datasets for
the mapping step itself. In recent advancements, Shi et al. [9] proposed
ero-IG, a novel zero-shot method for low-light image enhancement
nd denoising that does not require paired training data, outperforming
revious methods by effectively integrating illumination guidance in
he enhancement process. Wang et al. [10] introduced QuadPrior:
 zero-reference low-light enhancement framework, utilizing physical

quadruple priors for illumination-invariant processing, which bypasses
the need for paired low-light training data, marking a significant step
in unsupervised low-light enhancement.

Zhu et al. [11] and Park et al. [12] exploited generative models to
perform general-purpose domain adaptation. These models are found
to be capable of simulating complex scenarios and transformations, at
the cost of introducing local artifacts [13]. In the specific domain of low
ight imaging, Zamir et al. [14] addressed this issue by developing loss
unctions that assess the perceptual quality of images, using them to
rain a CNN encoder–decoder (that also necessitates paired data). How-
ver, these handcrafted loss functions may overlook specific aspects
elated to image quality, potentially leading to new unforeseen artifacts
t inference time. Given these challenges, exploring simpler pipelines
hat minimize the risk of introducing artifacts while still enhancing
mage quality in low-light conditions is a promising direction.

The NTIRE night imaging challenge [15,16], initiated in 2022 and
eld yearly, has been a significant catalyst for research in low light
nd night image rendering. This competition has spurred advancements
2 
by encouraging the development of innovative solutions for low light
image enhancement.

Most notably, Li et al. [17] introduced CBUnet: a neural image
processing pipeline that involves two U-net-type sub-architectures to
correct for color and brightness, respectively. The authors resorted to
manual correction of images from the challenge training set in order to
construct a paired dataset for the training of their own contribution to
night imaging. While effective, this manual approach limits scalability
to other datasets or imaging devices, suggesting a need for more
adaptable solutions.

Similarly, Liu et al. [18] presented a method for night imaging based
on the cascaded application of three independent modules, each trained
n its own set of paired data: a U-Net denoising module trained on a

custom dataset, the popular FC4 white balancing module [19] trained
n the ColorChecker dataset [20], and MWISP-inspired module [21]

for tone mapping, trained on manually-corrected images from the
hallenge dataset. The separation of tasks into independent subtasks

reduces the reliance on sensor-specific data, though paired data remain
essential.

Desai et al. [22] introduced LightNet, a multiscale encoder–decoder
network trained on a dedicated external dataset of paired images,
acquired across various ISO settings. This approach aimed to account
for different exposure levels during inference, but did not address cross-
sensor variability, which limited its effectiveness. This highlights the
importance of explicitly addressing the challenge of raw-to-raw sensor
mapping to enhance performance across different camera sensors.

In the 2023 edition of the night rendering challenge, Zini et al. [23]
presented ‘‘Back to the future’’, a night photography rendering ISP
that makes no use of deep learning, yet won first place in people’s
choice track and third place in photographer’s choice track. Building
on top of the previous year’s iteration [24], the authors’ solution
implements a ‘‘traditional’’ ISP pipeline to render visually pleasing
photographs of night scenes, characterized by a shallow structure,
explainable steps, and a low parameter count, resulting in computa-
tionally efficient processing. This achievement underlines the potential
of lightweight pipelines to deliver high-quality night scene renderings,
balancing proper tone mapping with minimization of visual artifacts.
Although no explicit training was required by this approach, the au-
thors manually tuned the free parameters of their solution to match
a desired visual aesthetic. This effectively means fitting for the target
test environment with manual labor, thus reducing the scalability of the
approach. This limitation prompts the exploration of a learning-based
method to determine optimal parameters using an independent dataset,
aiming for a process that eliminates the need for manual intervention
when adapting to the final application domain, thus enhancing the
method’s applicability and efficiency.

In Table 1 we reported each of the methods that are directly
comparable with the proposed approach, along with a brief description.
We also report the corresponding pros and cons, which motivate our
current proposal as described in the text.

3. Proposed method

In this section we describe our approach to night image rendering,
with a focus on the handling of parameters optimization on an unpaired
ataset. Based on this requirement, our solution is composed of:

1. A raw-to-raw mapping step, designed to delegate the need for
paired data to an external source independent from the device
whose pipeline is being optimized.

2. A Bayesian-based optimization of the specific parameters that
characterize the pipeline at hand.

Let 𝐷𝑡 be a dataset of low light images 𝐿𝑡:
𝐷𝑡 = {𝐿𝑡}. (1)
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Table 1
Description of each state-of-the-art methods comparable with the proposed approach.

Method (year) Approach Pros Cons

CBUnet [17] (2022) Use of two U-net sub-architectures for
separate color and brightness correction of
images.

Cascade architecture for separate
processing of components.
Presents a custom dataset.

Necessity of paired data obtained
by manual editing.

Deep-flexisp [18] (2022) Cascade application of three modules based
on Deep Learning: U-Net (Denoise),
FC4 (Color balancing),
MWISP-inspired network (tone mapping).

Flexible with independent modules.
Sensor independent.

Necessity of manually-corrected
images.

LightNet [22] (2023) LightNet, a multiscale encoder–decoder
network trained in a GAN framework.

Handles multiple exposure levels
simultaneously.
Hierarchical encoder–decoder effective
for processing fine details.
Presents a customized data set.

Custom collected dataset required
for training.
Computational complexity high
due to hierarchical generator.

BttF [23] (2023) Night image processing pipeline with low
number of parameters. NTIRE 2023 winner.

Shallow architecture and low number of
parameters.
Baseline for night image rendering.
Deep-learning free approach

Optimized manually with human
experience
c
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Low-light images in this dataset are encoded in a sensor-specific ‘‘tar-
get’’ raw space. Our goal is to produce high-light versions 𝐻𝑡 in a
tandard space (e.g. sRGB), through the optimization of an image signal
rocessing pipeline 𝑝𝜃𝑜𝑝𝑡 (⋅) that depends from parameters 𝜃:

𝐻𝑡 = 𝑝𝜃𝑜𝑝𝑡
(

𝐿𝑡
)

. (2)

No reference high-light version is available for direct optimization
on this dataset, therefore we aim to optimize 𝜃 on a second ‘‘source’’
dataset 𝐷𝑠, where low-light/high-light paired data is available:

𝐷𝑠 = {𝐿𝑠, 𝐻𝑠}. (3)

Here, 𝐿𝑠 is encoded in a sensor-specific raw space different from that
of 𝐿𝑡, while 𝐻𝑠 determines the standard space that will be used to also
produce 𝐻𝑡.

Due to the different low-light raw spaces, an optimization of pa-
ameters 𝜃 on dataset 𝐷𝑠 would yield suboptimal results on the target
ataset 𝐷𝑡. For this reason, it is necessary to first map source low-
ight images 𝐿𝑠 into the target raw space via mapping function 𝑚𝛾𝑜𝑝𝑡 (⋅),

depending on parameters 𝛾:

𝐿𝑚 = 𝑚𝛾𝑜𝑝𝑡 (𝐿𝑠). (4)

The following subsections deal, respectively, with: defining the
image signal processing pipeline 𝑝, optimizing the mapping function
𝑚𝛾 , and optimizing the pipeline parameters 𝜃.

3.1. Night image rendering pipeline

In order to optimize an already established pipeline, and to have
a baseline approach to start with, we select ‘‘Back to the future’’: the
night photography rendering pipeline proposed by Zini et al. [23] that
won the NTIRE 2023 Night Photography Rendering challenge.

Despite our specific choice, the optimization techniques described
in the following are general-purpose, and may be applied to other ISP
pipelines.

The current pipeline, represented in Fig. 1, processes the images
starting from the raw data from the camera sensor, with metadata
associated, giving final 8-bit processed images.

Since the total number of parameters of this pipeline is very low
(specifically 14), and since certain steps of the pipeline are not differ-
entiable functions (e.g. Non-local Means denoising step [25]), Bayesian
ptimization represents the best solution for the optimization of these
arameters, as developed later on in Section 3.3.

Table 2 reports the total amount of parameters and the details
egarding each step of the pipeline, while Fig. 1 depicts the entire

pipeline.
3 
We can define three main parts in the pipeline: a set of preliminary
camera-specific operations, a group of common fixed operations, and a
final group of optimizable functions.

As shown in Fig. 2, in the first group (a.1 in Fig. 1) two processing
steps are performed on the input raw data 𝐿. These normalization and
demosaicing operations are dependent on the metadata coming from the
amera and so are defined as camera-specific.

After this first preliminary group of operations the mapping function
𝑚𝛾 𝑜𝑝𝑡(⋅) on the input is applied in order to obtain their counterpart
𝑚 in the target camera space. Once the mapping has been applied,

he images pass through two fixed preliminary steps (a.2 in Fig. 1):
he Gray World AWB and the conversion from the camera to sRGB
pace. As shown in Fig. 2, the mapping function 𝑚𝛾 𝑜𝑝𝑡(⋅) is used only

during the optimization phase, since the dataset used is the 𝐷𝑠 one
which needs to be transformed into the target dataset space. During the
actual rendering phase the camera-specific and the preliminary steps
are performed directly one after the other. The color space conversion
is performed in both cases using the camera color matrix of the target
dataset 𝐷𝑡.

Subsequently, the images are processed by the rest of the pipeline
modules, of which parameters are optimized by the Bayesian optimiza-
tion procedure.

3.2. Optimization of raw-to-raw space mapping

Our objective here is to develop a mapping function 𝑚 that trans-
forms low-light source images 𝐿𝑠 into a format that matches properties
of a target raw space, represented by low-light images 𝐿𝑡. This trans-
formation is aimed not at visual aesthetics, i.e. it is not used to directly
perform the final rendering. Rather, it is aimed at aligning the data
distribution for the subsequent optimization process, which assumes
ata with similar distributions. We formulate this mapping as a per-
hannel non linear adjustment curve, and we motivate this choice in

the following.
The core challenge in raw-to-raw mapping lies in the different

ensitivities of different camera sensors: these influence the linearity
f data distribution within channels, as well as the interplay of col-
rs across them. The scientific literature indicates that simple linear
r polynomial transformations are not sufficient to model the com-
lex, non-linear nature of these differences [7], requiring instead more
omplex transformations.

In terms of data, existing methods typically leverage a set of paired
images to optimize the mapping between the two devices [8]. In our
onfiguration, however, no paired data can be assumed to be available.

This impacts the optimization strategy at multiple levels. First of all,
we are forced to compare the mapped data 𝐿 and the target data 𝐿
𝑚 𝑡
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Fig. 1. Overview of the baseline pipeline for night photography rendering by Zini et al. [23]. The pipeline can be subdivided into three main components: Preliminary steps
(camera-specific), Preliminary steps (fixed), and Optimizable steps.
Table 2
Default values of each parameter of the baseline pipeline. For each step of are here reported the number of parameters,
their role, and the default values taken from the original paper by Zini et al. [23].

Processing step # par. Default parameter values

Non-local means denoising 2 Luminance channel weight: 4.5
Chrominance channel weight: 20

Local Contrast Correction 1 Gaussian blur deviation 𝜎: 7.24
Global Mean Contrast 1 Value stretch factor 𝛽: 1.5
S-Curve 2 Curve node 𝛼: 0

Curve divergence 𝜆: 0.556
Histogram stretch 2 Lower percentile: 0.0001

Higher percentile: 0.9999
Conditional Contrast Correction 3 First S-curve 𝜆1: 0.556

Second S-curve 𝜆2: 0.714
Gamma correction 𝛾: 2.2

Sharpening 2 Gaussian blur deviation 𝜎: 2
Scale factor: 1

Grayness Index White Balancing 2 Best grey pixel proportion 𝑁 : 0.1
Threshold: 0.0001

Total number of parameters 15
Fig. 2. Our optimization and rendering phases. In the optimization phase the raw images from the source dataset are processed with the camera-specific steps, mapped to the
target camera color space and then used for parameter optimization. In the rendering phase, the optimized parameters are directly used on the images of the target dataset.
via global statistics such as histogram comparison, as opposed to pixel-
wise operations. This, in turn, poses a serious constraint on the type of
raw-to-raw transformation to be implemented: a generative and/or an
encoder–decoder model [11,12] would have the freedom to introduce
local artifacts that would not be detected by a global metric. It follows
that a stronger control on the output of the mapping is required.

Aiming to strike a balance in terms of mapping complexity, and
guided by the requirement of global comparison, we identify color
curves as the basis for our solution for raw-to-raw mapping. The proce-
dure depends on specific architectural and implementative choices, as
delineated in the following.

1. A training set of target images is first isolated to ensure fairness
in the subsequent procedure and its evaluation:

𝐿𝑡TR ⊂ 𝐿𝑡 (5)
4 
2. Images from the source set, and from the target training set, are
downscaled with anti-aliased sampling:

{↓ 𝐿𝑠, ↓ 𝐿𝑡TR} (6)

This operation has two main effects: it leads to a drastic reduc-
tion in the computational requirements, and it filters out noise
during optimization.

3. Color histograms are computed for all images from both sets,
collecting Red Green and Blue information independently:

ℎ𝑖𝑠𝑡 (𝐼[ch]) ∀ 𝐼 ∈ {↓ 𝐿𝑠, ↓ 𝐿𝑡TR} ∀ ch ∈ {𝑅, 𝐺 , 𝐵} (7)

Working in RGB allows to adjust the relative color distribu-
tion, which is essential for accurately simulating the target raw
space’s characteristics. Conversely, histogram matching on a
luminance-like channel would fail the objective of redistributing
the colors.
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Fig. 3. Comparison between color histograms of the Night23 raw data, SID-Sony raw data and SID-Sony raw data after applying the mapping function 𝑚𝛾𝑜𝑝𝑡 (⋅). The raw images
are processed with a fixed gamma correction for visualization purposes.
4. For each channel, one global histogram is aggregated from the
histograms of all source images, and one from the histograms of
all training target images:

𝑔𝑠,ch =
∑

𝐼∈↓𝐿𝑠

ℎ𝑖𝑠𝑡 (𝐼[ch]) (8)
𝑔𝑡TR ,ch =

∑

𝐼∈↓𝐿𝑡TR

ℎ𝑖𝑠𝑡 (𝐼[ch]) (9)

5. Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [26]
is used to create a mapping function that aligns 𝑔𝐿𝑠 ,ch and 𝑔𝐿𝑡TR ,ch
for each color channel independently.
In other words, we do not match each source image to a given
target image, instead we define three global matching functions
(different for each channel). This ensures that the transformation
is consistent across all images, preserving the inherent differ-
ences between images, such as variations between blue-light and
yellow-light scenes.

A visual representation of the effect of raw-to-raw space mapping
is presented in Fig. 3: global RGB histograms are shown for a target
dataset Night23, for a source dataset SID Sony, and for its remapped
version. Sample images from the datasets are also visualized.

3.3. Optimization of image signal processing pipeline

Algorithm 1 Bayesian optimization of the night rendering pipeline.
𝛩: hyper parameter space.
𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: number of total optimization iterations.
1: Select initial configuration 𝜃0 ∈ 𝛩
2: Evaluate initial score 𝑦0 = 𝓁(𝜃0)
3: Set 𝜃∗ ← 𝜃0 and 𝑦∗ ← 𝑦0
4: for 𝑛 = 1,… , 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: sample new 𝜃 ∈ 𝛩 using the acquisition function
6: evaluate 𝑦 = 𝓁(𝜃)
7: update surrogate model 𝜋(𝑦|𝜃)
8: if 𝑦 > 𝑦∗ then
9: Set 𝜃∗ ← 𝜃 and 𝑦∗ ← 𝑦

10: end if
11: end for
12: output 𝜃∗, 𝑦∗

Let 𝓁 be a function that computes the distance of two paired image
sets, where each image in the first set has a direct correspondence
in the second set. Our goal is to minimize distance 𝓁 between the
source low-light images processed with pipeline 𝑝, and their high-light
counterpart:

𝜃𝑜𝑝𝑡 = argmin
(

𝓁
(

𝑝𝜃(𝐿𝑚), 𝐻𝑠
))

. (10)

𝜃

5 
Here, 𝑝 is a previously defined image processing pipeline and 𝜃 is the
set of free parameters to be optimized. We approach the search for the
minimum in 𝓁 by means of Bayesian optimization [27]. This approach
considers 𝓁 as a black-box function: the evaluation of 𝓁 is performed by
only observing its application to parameters 𝜃, without the necessity of
computing first- or second-order derivatives. This particular condition
lets us optimize a pipeline containing any kind of algorithm, without
the restriction of using only differentiable functions, a characteristic
that suits well the use case we are considering, where several opera-
tions, like histogram-based operators or denoising algorithms, are in
general non-differentiable steps.

The typical form of Bayesian optimization algorithms involves two
primary components:

1. A Bayesian statistical model for modeling the probability of im-
provement, defined as 𝜋(𝑦|𝜃), where 𝑦 represents an observation
of the objective function 𝓁. It is usually modeled with Gaussian
Processes.

2. An acquisition function for deciding where to sample next. This
function measures the value that would be generated by evalu-
ation of the objective function at a new point 𝜃, based on the
current posterior distribution modeled over 𝓁.

We reported the pseudo-code of the Bayesian optimization procedure
in Algorithm 1.

In our configuration we adopt the Tree-structured Parzen Estima-
tor (TPE) algorithm [28], a variant of BO that adopt an acquisition
function similar in behavior to the probability of improvement, and
exploits Kernel Density Estimators (KDEs) and tree-structured search
spaces. Whereas the Gaussian-process based approach models the 𝜋(𝑦|𝜃)
directly, this strategy models 𝜋(𝜃|𝑦) and 𝜋(𝑦). At each iteration, for
each parameter, TPE fits one Gaussian Mixture Model (GMM) 𝑙(𝜃) to
the set of parameter values associated with the best objective values,
and another GMM 𝑔(𝜃) to the remaining parameter values. Two such
densities define 𝜋(𝜃|𝑦) as:

𝜋(𝜃|𝑦) =
{

𝑙(𝜃) 𝑖𝑓 𝑦 < 𝑦 ∗
𝑔(𝜃) 𝑖𝑓 𝑦 ≥ 𝑦 ∗,

(11)

where 𝑙(𝜃) is the density formed by using the observations 𝜃𝑖 such that
corresponding loss 𝓁 is less than 𝑦 ∗, and 𝑔(𝜃) is the density formed by
using the remaining observations. The TPE algorithm chooses 𝑦 ∗ to be
some quantile 𝑞 of the observed 𝑦 values, so that 𝜋(𝑦 < 𝑦 ∗) = 𝑞, without
the necessity of specifying a specific model for 𝜋(𝑦). TPE chooses the
parameter value 𝜃 that maximizes the ratio 𝑙(𝜃)

𝑔(𝜃) .
We adopt this optimization strategy to optimize a image rendering

pipeline with a limited number of parameters, without any restriction
on algorithms used in such pipeline.
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Table 3
Ranges of the search spaces of each parameter, for each step of the rendering pipeline. Each parameter has been
sampled as a floating point value 32-bit precision. The values at the borders are included in the search space.

Processing step Default parameter values Search space range

Non-local means denoising Luminance channel weight: 4.5 [0, 30]
Chrominance channel weight: 20 [0, 30]

Local Contrast Correction Gaussian blur deviation 𝜎: 7.24 [0, 12]
Global Mean Contrast Value stretch factor 𝛽: 1.5 [0.8, 2.0]
S-Curve Curve node 𝛼: 0 [0, 1]

Curve divergence 𝜆: 0.556 [0.1, 10]
Histogram stretch Lower percentile: 0.0001 [0, 0.5]

Higher percentile: 0.9999 [0.5 , 1]
Conditional Contrast Correction First S-curve 𝜆1: 0.556 [0, 1]

Second S-curve 𝜆2: 0.714 [0, 1]
Gamma correction 𝛾: 2.2 [1, 10]

Sharpening Gaussian blur deviation 𝜎: 2 [1, 3]
Scale factor: 1 [0, 2]

Grayness Index White Balancing Best gray pixel proportion 𝑁 : 0.1 [0, 1]
Threshold: 0.0001 [1𝑒−6, 1𝑒−2]
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The distance function 𝓁, adopted for the optimization process is the
negative of Peak Signal-to-Noise Ratio (PSNR) [29]. PSNR is computed
on the three channel 𝐻𝑡 output image and the target 𝐻𝑠 image and is
defined as:

PSNR = 20 ⋅ 𝑙 𝑜𝑔10
(

1
MSE(𝐻𝑡, 𝐻𝑠)

)

(12)

where MSE is the Mean Squared Error between the two images 𝐻𝑡 and
𝑠.

Due to the fact that the PSNR value is close to zero for images which
are completely different and goes to infinity for images equal to each
other, we formalize the minimization problem by targeting the negative
of the PSNR.

4. Experiments

The night rendering pipeline has been developed in Python 3.8,
and the Bayesian optimization has been implemented with the Op-
tuna library, version 2.10.1. The raw-to-raw space mapping has been
implemented in MATLAB R2022b.

In the following, we will describe the datasets used for the optimiza-
ion and the testing of the pipeline, as well as the configuration of the

optimization process.

4.1. Dataset

In order to optimize the pipeline defined in Section 3.1 with the
proposed optimization approach, we require a third-party dataset that
includes raw data and reference ground truth (images processed for
high-lighting). We consequently selected the ‘‘Learning to See In the
Dark’’ dataset (SID) from Chen et al. [30], which is a collection of
ictures taken in low light conditions (mainly night scenes and indoor
cenes) with two different cameras: a Sony 𝛼7S and a Fujifilm X-T2.
or each image of the two cameras, the dataset offers a single long-
xposure processed image, which is considered the ground truth, and
ultiple short-exposure raw data images in the camera’s proprietary

ormat. Each input raw image keeps the original camera metadata in
XIF format, while explicit information on exposure time is encoded in
he file names. We specifically used the data from the Sony camera as
ur source dataset 𝐷𝑠, to perform the optimization procedure. This part
f the SID dataset contains 8091 image pairs.

For the validation and testing of the optimization procedure, we
adopted the dataset from the NTIRE Night Photography Rendering
Challenges 2022 [15] (Night22) and 2023 editions [16] (Night23);
oth the datasets are made of around 400 images (482 the 2022
dition and 400 the 2023 one), in raw 16-bit format with metadata
6 
associated. Since the images have been acquired with the same camera
odel, we can effectively exploit the two datasets as training and

test sets respectively. More specifically: the Night22 images have been
sed to compute the mapping function 𝑚𝛾 𝑜𝑝𝑡(⋅), while Night23 images
ave been used for the actual evaluation of the optimized pipeline.
ue to the nature of the challenges, reference ground truth images
re not provided, so evaluation has been performed on the basis of

psycho-visual tests. Datasets that do not provide raw data alongside
he reference processed images (e.g., the LOL Low-Light dataset [31])

were excluded from the training and evaluation of our optimization
approach. This is because our method specifically targets raw camera
data to optimize the image signal processing pipeline. Additionally,
the LOL dataset consists of images captured in daylight conditions
but under incorrect exposure settings to simulate low-light scenarios,
rather than actual night landscapes. As a result, this dataset does not
lign with the real-world conditions we aim to address, rendering it
nsuitable for our task.

4.2. Optimization setup

The Bayesian optimization process requires defining a search range
for each parameter to be investigated. In Table 3 are reported, for
each parameter, the corresponding ranges of each search space. Each
range has been manually defined, based on previous knowledge of the
semantics of each parameter, in order to have spaces large enough
for and exhaustive exploration during the optimization procedure,
while preventing combinations of parameters that may bring undesired

rong behaviors (e.g. gamma values lower or equal to 0, etc...). All
f the parameters have been sampled as float values in the reported
anges [𝑖, 𝑗], where 𝑖 and 𝑗 are included in the set of possible values.
o optimize those parameters a thumbnail version of the SID dataset
as been used; each image of the Sony-SID dataset has been reduced
t 1

16
𝑡ℎ

of the original dimension in order to reduce the computational
costs. The parameters dependent on the image resolution have been
ptimized during the optimization phase but set back to the default
alues during the inference/testing phase.

The optimization has been done for a total of 400 trials, adopting
he multivariate TPE sampler [32] with a number of candidates for the

expected improvement computation set to 64.

4.3. Evaluation

In the following we describe the metrics and strategies used to
evaluate the effectiveness of the proposed ISP optimization pipeline.

e cover three main aspects: distributional similarity, image quality
assessment in paired settings, and subjective quality evaluation in
unpaired settings.
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4.3.1. Kullback–Leibler divergence for distribution analysis
To assess the effectiveness of our raw-to-raw mapping in reduc-

ing the discrepancy between the source (SID) and target (Night23)
image set distributions, we utilize the Kullback–Leibler (KL) diver-
gence [33]. The KL divergence quantifies how one probability dis-
tribution 𝑄 diverges from a second, expected probability distribution
𝑃 :

KL(𝑃 ∥ 𝑄) =
∑

𝑖
𝑃 (𝑖) log

(

𝑃 (𝑖)
𝑄(𝑖)

)

, (13)

where 𝑃 (𝑖) and 𝑄(𝑖) are the probabilities of the 𝑖th element in distribu-
tions 𝑃 and 𝑄, respectively.

4.3.2. SSIM and PSNR for image quality
To evaluate the image quality after applying the optimized ISP

ipeline in a controlled, paired data setup (i.e. within the SID dataset),
e use the Structural Similarity Index (SSIM) [34] and the Peak Signal-

o-Noise Ratio (PSNR) [29]. SSIM provides a measure of similarity
etween two images, capturing texture and structural information:

SSIM(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2𝑥 + 𝜎2𝑦 + 𝑐2)
(14)

where 𝜇𝑥, 𝜇𝑦 are the averages, 𝜎𝑥, 𝜎𝑦 are the variances, and 𝜎𝑥𝑦 is the
ovariance of images 𝑥 and y. PSNR is defined as:

PSNR = 20 ⋅ log10
(

𝑀 𝐴𝑋𝐼
√

𝑀 𝑆 𝐸

)

(15)

where 𝑀 𝐴𝑋𝐼 is the maximum possible pixel value of the image, and
 𝑆 𝐸 is the mean squared error between the optimized and reference

images.

4.3.3. Psychovisual study for unpaired setup
To evaluate the perceptual quality of the optimized pipeline in

an unpaired setup (i.e. on the Night23 dataset), where no reference
images exist, we conduct a psychovisual study. This involves subjective
assessments from a group of ten observers who rate the visual quality of
images processed by our pipeline, and by other existing solutions from
the state of the art.

4.3.4. Quantitative evaluation for unpaired setup
In addition to the psychovisual study for evaluating the perceptual

uality in an unpaired setup, we implement a quantifiable assessment
in the Unpaired setup of the Night 2023 dataset.

The Light Order Error (LOE) [35] measures the accuracy of lightness
rder between the processed image and a reference (input raw), assess-
ng how well the processing preserves the natural luminance ranking
mong different areas within an image:

𝐿𝑂 𝐸 = 1
𝑁

∑

𝑖,𝑗
|sign(𝐻(𝑖) −𝐻(𝑗)) − sign(𝐿(𝑖) − 𝐿(𝑗))|, (16)

where 𝐿 and 𝐻 are, respectively, the original and processed images,
ndexed with 𝑖 and 𝑗 over the total number of pixels 𝑁 .

We also consider no-reference image quality assessments using
BRISQUE [36], NIQE [37], and PIQE [38]. These metrics evaluate the
naturalness and perceptual quality of images without the need for a
eference image:

• BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator)
quantifies possible losses in naturalness due to processing.

• NIQE (Natural Image Quality Evaluator) uses a statistical model
of natural image features to evaluate quality.

• PIQE (Perception-based Image Quality Evaluator) provides scores
based on perceptual aspects of image quality, such as texture and
noise.
d
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Table 4
Kullback–Leibler divergence between SID-Sony images and Night23 images (top), and
between SID-Fuji images and Night23 images (bottom). We report the effect without
and with raw-to-raw space mapping on all three color channels (RGB), as well as the
average of the three color channels (𝜇). The lower, the better.

SID-Sony KL divergence

R G B 𝜇

No raw-to-raw mapping 0.6747 0.5209 0.8079 0.6678
Raw-to-raw mapping 0.2304 0.1531 0.2722 0.2186

SID-Fuji KL divergence

R G B 𝜇

No raw-to-raw mapping 0.6362 0.4566 0.9393 0.6774
Raw-to-raw mapping 0.2910 0.2006 0.5919 0.3612

Table 5
PSNR and SSIM values computed on the processed images of the SID-Sony and SID-Fuji
datasets, using different versions of the pipeline (default and optimized parameters).
The higher, the better.

SID-Sony

PSNR SSIM

Default parameters 16.9656 0.7041
Bayes optimization (from random values) 18.2684 0.7286
Bayes optimization (from default values) 18.3734 0.7680

SID-Fuji

PSNR SSIM

Default parameters 15.8602 0.7405
Bayes optimization (from random values) 16.8554 0.7792
Bayes optimization (from default values) 16.4109 0.7663

4.4. Experimental results

In this section we report the effect of the mapping function on the
color distribution of the images of the different datasets, and the impact
of the optimization on the SID dataset and the NTIRE photography
rendering challenge datasets. Here a visual comparison of the results
f the state-of-the-art approaches and the proposed one is reported,
longside the results of the psycho-visual test using the Night23 dataset.

In order to quantify the effectiveness of our raw-to-raw space map-
ing, we compute the Kullback–Leibler divergence for several versions
f the SID image dataset against the Night23 test set. The results
re reported in Table 4, concerning both the Sony and Fuji cameras,

without and with raw-to-raw mapping. Since our mapping takes place
on the three RGB channels independently, as motivated in Section X, we
report the resulting divergences on all channels, as well as an aggregate
average measure (𝜇). It can be observed that the Kullback–Leibler
divergence drops significantly thanks to our mapping, specifically by
67% on Sony and by 47% on Fuji.

Fig. 3 offers a qualitative reference for the effect of raw-to-raw
mapping, highlighting visually the difference in values distribution of
a sample Sony raw image against a Night23 raw image, and how this
difference is reduced after mapping.

In Table 5 are reported the values of PSNR and SSIM obtained on
source paired data, focusing on two different cameras (Sony and Fuji)
of the SID dataset. The metrics are computed on thumbnail images, as
done during the optimization setup: results on full resolution images
are presented later on, on the target Night23 dataset. The reported
experiments refer to different configurations of parameters in the night
endering pipeline: ‘‘Default’’ indicates the original setup from [24],

while ‘‘Bayes optimization’’ refers to the configuration reached with
the approach presented in this paper. Specifically, two variants are ex-
plored: ‘‘from default values’’ uses the default parameters as a starting
oint for optimization, whereas ‘‘from random values’’ does not exploit
his information. The rationale is to investigate to what extent a priori
omain knowledge may facilitate the Bayesian optimization process.
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Fig. 4. Visual comparison of the results obtained on the Night 23 dataset. The first column shows the results obtained using the default set of parameters, while the second and
the third show the results obtained with the two sets of optimized parameters.
As can be seen in Table 5, the Bayesian optimization brings an
improvement on both metrics, compared to the use of default param-
eters. This is related to the fact that the original default parameters
of the pipelines had been specifically selected for the Night23 dataset
processing, and hence they do not fit well with the SID dataset. Compar-
ing the two starting points for Bayesian optimization, there are small,
and inconsistent, performance variations between the two cameras:
while Sony favors starting from default values, Fuji favors starting from
random values. This suggests that there is no significant impact given
by providing a priori knowledge on the starting point. The observation
is further corroborated by Fig. 4, where only slight differences between
the two optimizations are visible.

As previously described, the proposed optimization procedure ex-
ploits the ground truth of a secondary dataset (SID, in our setup) to
optimize the parameters of a rendering pipeline. For this reason, the
results necessarily fit the color distribution of the dataset used for the
optimization. In Fig. 5 are reported the mean RGB histograms of the
Night23 dataset images processed with different parameters and the
SID Sony high light images.
8 
4.4.1. Psychovisual study
We conduct a psychovisual study, structured in two parts, to quali-

tatively assess the results of our night rendering pipeline optimization.
In the first part, participants to the study assessed three distinct sets

of images processed through different pipelines:

1. The original, manually-tuned pipeline by Zini et al. serving as a
baseline.

2. Our Bayesian-based optimizations of the pipeline, using SID-
Sony images as a reference.

3. Our Bayesian-based optimizations of the pipeline, using SID-Fuji
images as a reference.

The results, depicted in Fig. 6 (top), show that the original pipeline
is outperformed by either Bayesian-based optimization. Specifically,
the gathered feedback revealed a clear preference for the SID-Sony
optimized pipeline, which participants found to produce images with
superior clarity and color accuracy. The SID-Fuji pipeline, while also
improving upon the original, was slightly less favored, indicating that
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Fig. 5. Color distributions of the Night23 dataset and the SID-Sony dataset. In the first row are reported the distributions of the Night23 processed by the original pipeline and the
SID-Sony Ground Truth; in the second row are reported the color distributions of the results obtained on the Night23 dataset with the two different sets of optimized parameters,
using the SID-Sony dataset for optimization.
the choice of reference dataset plays a critical role in the optimization’s
effectiveness.

For the second part, we selected eight recent state-of-the-art ap-
proaches for low-light image enhancement and performed a psycho-
visual evaluation test using the same 50 images from the validation
set, processed by the selected methods. More precisely, we selected
EnlightenGAN [39], ExCNet [40], Kind++ [41], Zero-DCE [42], Zero-
DCE++ [43], QuadPrior [10], and two variants of ZeroIG [9] trained
respectively on LOL images and Huawei smartphone images. Since
not all these methods are originally designed to handle the sensor-
specific green tint typical of raw images, we preprocess the images
through a Gray world white balancing algorithm in order to provide
a more fair setup for such methods. The results, depicted in Fig. 6
(bottom), indicate that our Bayesian-Optimized SID-Sony pipeline was
rated the best in perceptual quality, followed directly by Zero-DCE++
and ZeroIG in its Huawei variant. In addition, in Fig. 7 we show a
visual comparison of the results of selected state-of-the-art methods and
our B.O. SID Sony optimized pipeline, providing a general view of the
rendering capabilities of different solutions. Detail analysis is shown
later on.

We also evaluate the results of our Bayesian pipeline optimization
against the same methods in the state of the art, by resorting to light-
ness order error, as well as standard no-reference image quality metrics.
The results, reported in Table 6, show that our solution is competitive
throughout most considered metrics, resulting in the top 3 solutions for
LOE, NIQE, and BRISQUE. Intermediate results are obtained through
PIQE, which seems to favor QuadPrior. This result contrasts with the
psychovisual study, suggesting a possible discrepancy between said
metric and perceived quality in night images. This hypothesis opens an
interesting direction for future investigation. We have also reported the
number of parameters and floating-point operations of the models [44].
It is worth noting that the proposed solution not only has a much
smaller number of parameters, as already mentioned, but is also the
second best in terms of GFLOPs, second only to Zero-DCE++, which
represents the most efficient solution.

Finally, Fig. 8 offers a close-up view of the details generated by our
B.O. SID Sony solution, compared to recent methods QuadPrior and
ZeroIG (LOL), and the second best method according to quantitative
9 
Fig. 6. Pie charts reporting the distribution of the results of the psycho-visual test,
in terms of number of preferences. On the top we compare different versions of our
solution. On the bottom, we compare our best configuration against other state-of-the-
art low-light image enhancement approaches.

analysis. QuadPrior is shown to introduce a loss in image resolution
that is tied to the underlying diffusion-based generative process. Con-
versely, both Zero-DCE++ and ZeroIG (LOL) produce a competitive
level of detail rendering, with ZeroIG (LOL) losing partial detail in
highly illuminated local areas.
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Fig. 7. Visual comparison of images from the Night23 dataset rendered with our optimized pipeline (B.O. SID-Sony) and with state-of-the-art approaches.
Table 6
Comparison with the state-of-the-art approaches using LOE, no reference metrics, alongside the number of parameters and floating point operations (FLOPs). For all values except
LOE, the lower, the better. In parentheses are reported the rankings for each metric, with the best per column highlighted in boldface, and the second best underlined. The last
column reports the average ranking.

Method Parameters (M) ↓ FLOPs (G) ↓ LOE ↑ NIQE ↓ BRISQUE ↓ PIQE ↓ Average rank

Manual [23] 15*𝑒−6 3.998 0.9132 (6) 3.8966 (9) 30.4424 (10) 44.7492 (10) 8.75
B.O. SID Fuji (ours) 15*𝑒−6 3.998 0.9133 (5) 2.9371 (4) 20.3956 (4) 33.5735 (7) 5
B.O. SID Sony (ours) 15*𝑒−6 3.998 0.9194 (2) 2.9133 (3) 19.2530 (3) 34.0091 (8) 4

EnlightenGAN [39] 8.637 273.240 0.7537 (11) 2.8252 (2) 27.7384 (9) 33.4390 (6) 7
ExCnet [40] 8.274 – 0.8970 (8) 4.1445 (11) 26.2683 (6) 27.4960 (4) 7.25
KinD++ [41] 8.275 12 238.026 0.8859 (9) 3.8346 (8) 36.0030 (11) 49.9703 (11) 9.75
Zero-DCE [42] 0.079 84.990 0.9119 (7) 2.6934 (1) 27.1583 (7) 31.0900 (5) 5
Zero-DCE++ [43] 0.010 0.115 0.9371 (1) 3.3054 (5) 27.2950 (8) 41.7243 (9) 5.75
QuadPrior [10] 1313.603 – 0.7600 (10) 4.1380 (10) 23.8110 (5) 21.3203 (1) 6.5
ZeroIG (Huawei) [9] 0.086 5013.563 0.9146 (4) 3.6834 (7) 16.2269 (1) 24.1564 (2) 3.5
ZeroIG (LOL) [9] 0.086 5013.563 0.9159 (3) 3.6456 (6) 16.3019 (2) 24.3302 (3) 3.5
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. Conclusions

In this paper, we have introduced a novel approach for optimizing
mage Signal Processing pipelines for night photography using Bayesian
erivative-free methods. Our method addresses several key challenges
n the domain, including the need for paired data and the limita-
ions imposed by differentiability requirements in conventional deep
earning methods. By leveraging a raw-to-raw conversion process and
xternal paired datasets, we have demonstrated the ability to adapt
nd optimize existing ISP pipelines for specific camera setups without
anual tuning.

Our experimental results show improvements in image quality as
valuated by both objective metrics and subjective assessments through
sychovisual studies. The SID-Sony optimized pipeline, in particular,
as found to be highly effective, outperforming the original pipeline
nd competing closely with state-of-the-art methods while maintaining
 low computational complexity.

Our approach delegates the requirement for paired data to a third-
arty dataset, significantly improving its applicability to new sensors.
owever, this introduces a dependency on the specific characteristics
f the training data, since different rendering styles in the third-party
ataset would lead to different optimal pipeline parameters, and to
 different final rendering. This suggests the opportunity to fine tune
ifferent variants of a rendering style by resorting to a limited num-
er of user-specific rendering examples [45]. Additionally, while the
ayesian derivative-free optimization removes the dependency on dif-
erentiability that is characteristic of backpropagation, it shares its
 i

10 
imited applicability to parameter optimization, thus ignoring structure
ptimization. To this extent, we consider expanding our work by in-
egrating it into a reinforcement learning paradigm, or by exploiting
echniques from the field of cartesian genetic programming [46].

Overall, our approach not only enhances the performance of night
hotography rendering but also provides a scalable and flexible frame-
ork that can be adapted to various imaging conditions and camera
evices. This work paves the way for future research in ISP optimiza-
ion, emphasizing the importance of flexible, data-efficient methods
ver traditional, labor-intensive tuning processes.
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Fig. 8. Visual comparison of images from the Night23 dataset rendered with our optimized pipeline (B.O. SID-Sony) and with state-of-the-art approaches. Zoomed sections of
different test images are reported here to compare how the approaches perform on small details in the images.
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