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Abstract. In this paper, we address the problem of enhancing per-
ceptual quality in video super-resolution (VSR) using Diffusion Models
(DMs) while ensuring temporal consistency among frames. We present
StableVSR, a VSR method based on DMs that can significantly enhance
the perceptual quality of upscaled videos by synthesizing realistic and
temporally-consistent details. We introduce the Temporal Conditioning
Module (TCM) into a pre-trained DM for single image super-resolution
to turn it into a VSR method. TCM uses the novel Temporal Texture
Guidance, which provides it with spatially-aligned and detail-rich tex-
ture information synthesized in adjacent frames. This guides the gener-
ative process of the current frame toward high-quality and temporally-
consistent results. In addition, we introduce the novel Frame-wise Bidi-
rectional Sampling strategy to encourage the use of information from
past to future and vice-versa. This strategy improves the perceptual
quality of the results and the temporal consistency across frames. We
demonstrate the effectiveness of StableVSR in enhancing the perceptual
quality of upscaled videos while achieving better temporal consistency
compared to existing state-of-the-art methods for VSR. The project page
is available at https://github.com/claudiom4sir/StableVSR.

Keywords: Video super-resolution · Perceptual quality · Temporal
consistency · Diffusion models

1 Introduction

Video super-resolution (VSR) aims to increase the spatial resolution of a video
enhancing its level of detail and clarity. Recently, many VSR methods based on
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Fig. 1. Reconstruction metrics, such as PSNR, evaluate the pixel-wise difference and
do not correlate well with human perception. Perceptual metrics, such as LPIPS, bet-
ter capture the perceptual quality. Existing methods lack generative capability and
focus on reconstruction quality, often producing perceptually unsatisfying results. The
proposed StableVSR enhances the perceptual quality by synthesizing realistic details,
leading to better visual results. Results reported as PSNR/LPIPS using ×4 upscaling.
Best results in bold text. PSNR: the higher, the better. LPIPS: the lower, the better.

deep learning techniques have been proposed [24]. Ideally, a VSR method should
generate plausible new contents that are not present in the low-resolution frames.
However, existing VSR methods lack generative capability and cannot synthesize
realistic details. According to the perception-distortion trade-off, under limited
model capacity, improving reconstruction quality inevitably leads to a decrease
in perceptual quality [2]. Existing VSR methods mainly focus on reconstruc-
tion quality. As a consequence, they often produce perceptually unsatisfying
results [19]. As shown in Fig. 1, frames upscaled with recent state-of-the-art VSR
methods [4,22] have high reconstruction quality but low perceptual quality,
exhibiting blurriness and lack of details [42].

Diffusion Models (DMs) [15] are a class of generative models that transform
random noise into images through an iterative refinement process. Inspired by the
success of DMs in generating high-quality images [8,15,30,33], several works have
been recently proposed to address the problem of single image super-resolution
(SISR) using DMs [13,16,20,32,34,39]. They show the effectiveness of DMs in
synthesizing realistic textures and details, contributing to enhancing the percep-
tual quality of the upscaled images [19]. Compared to SISR, VSR requires the
integration of information from multiple closely related but misaligned frames to
obtain temporal consistency over time. Unfortunately, applying a SISR method
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to individual video frames may lead to suboptimal results and may introduce
temporal inconsistency [31]. Different approaches to encourage temporal consis-
tency in video generation using DMs have been recently studied [1,10,44,46].
However, these methods do not specifically address VSR and do not use fine-
texture temporal guidance. As a consequence, they may fail to achieve temporal
consistency at fine-detail level, essential in the context of VSR.

In this paper, we address these problems and present Stable Video Super-
Resolution (StableVSR), a novel method for VSR based on DMs. StableVSR
enhances the perceptual quality of upscaled videos by synthesizing realistic and
temporally-consistent details. StableVSR exploits a pre-trained DM for SISR [30]
to perform VSR by introducing the Temporal Conditioning Module (TCM).
TCM guides the generative process of the current frame toward the generation
of high-quality and temporally-consistent results over time. This is achieved by
using the novel Temporal Texture Guidance, which provides TCM with spatially-
aligned and detail-rich texture information from adjacent frames: at every sam-
pling step t, the predictions of the adjacent frames are projected to their initial
state, i.e. t = 0, and spatially aligned to the current frame. At inference time,
StableVSR uses the novel Frame-wise Bidirectional Sampling strategy to avoid
error accumulation problems and balance information propagation: a sampling
step is first taken on all frames before advancing in sampling time, and informa-
tion is alternately propagated forward and backward in video time.

In summary, our main contributions are the following:

– We present Stable Video Super-Resolution (StableVSR): the first work that
approaches VSR under a generative paradigm using DMs. It significantly
enhances the perceptual quality of upscaled videos while ensuring temporal
consistency among frames;

– We design the Temporal Texture Guidance containing detail-rich and
spatially-aligned texture information synthesized in adjacent frames. It guides
the generative process of the current frame toward the generation of detailed
and temporally consistent frames;

– We introduce the Frame-wise Bidirectional Sampling strategy with forward
and backward information propagation. It balances information propagation
across frames and alleviates the problem of error accumulation;

– We quantitatively and qualitatively demonstrate that the proposed Sta-
bleVSR can achieve superior perceptual quality and better temporal con-
sistency compared to existing methods for VSR.

2 Related Work

Video Super-Resolution. Video super-resolution based on deep learning has
witnessed considerable advances in the past few years [24]. ToFlow [45] fine-
tuned a pre-trained optical flow estimation network with the rest of the frame-
work to achieve more accurate frame alignment. TDAN [36] proposed the use
of deformable convolutions [50] for spatial alignment as an alternative to opti-
cal flow computation. EDVR [40] extended the alignment module proposed in
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TDAN [36] to better handle large motion and used temporal attention [37] to
balance the contribution of each frame. BasicVSR [3] revised the essential com-
ponents for a VSR method, i.e. bidirectional information propagation and spatial
feature alignment, and proposed a simple yet effective solution. BasicVSR++ [4]
improved BasicVSR [3] by adding second-order grid propagation and flow-guided
deformable alignment. RVRT [22] combined recurrent networks with the atten-
tion mechanism [37] to better capture long-range frame dependencies and enable
parallel frame predictions. RealBasicVSR [5] proposed to use a pre-cleaning mod-
ule before applying a variant of BasicVSR [3], and the use of a discriminator
model [41] to improve the perceptual quality of the results.

Diffusion Models for Single Image Super-Resolution. The success of
Diffusion Models in image generation [8,15,30,33] inspired the development
of single image super-resolution methods based on DMs [13,16,20,32,34,39].
SRDiff [20] and SR3 [34] demonstrated DMs can achieve impressive results in
SISR. SR3+ [32] extended SR3 [34] to images in the wild by proposing a higher-
order degradation scheme and noise conditioning augmentation. LDM [30] pro-
posed to work in a VAE latent space [11] to reduce complexity requirements and
training time. CDM [16] proposed to cascade multiple DMs to achieve SISR at
arbitrary scales. IDM [13] proposed to introduce the implicit image function in
the decoding part of a DM to achieve continuous super-resolution. StableSR [39]
leveraged prior knowledge encapsulated in a pre-trained text-to-image DM to
perform SISR avoiding intensive training from scratch.

3 Background on Diffusion Models

Diffusion Models [15] convert a complex data distribution x0 ∼ pdata into a
simple Gaussian distribution xT ∼ N (0, I), and then recover data from it. A
DM is composed of two processes: the diffusion process and the reverse process.

Diffusion Process. The diffusion process is a Markov chain that corrupts data
x0 ∼ pdata until they approach Gaussian noise xT ∼ N (0, I) after T diffusion
steps. It is defined as:

q(x1, ..., xT |x0) =
T∏

t=1

q(xt|xt−1), (1)

where t represents a diffusion step and q(xt|xt−1) = N (xt;
√

1 − βt(xt−1), βtI),
with βt being a fixed or learnable variance schedule. At any step t, xt can be
directly sampled from x0 as:

xt =
√

αtx0 +
√

1 − αtε, (2)

where αt = 1 − βt, αt =
∏t

i=1 αi and ε ∼ N (0, I).

Reverse Process. The reverse process is a Markov chain that removes noise
from xT ∼ N (0, I) until data x0 ∼ pdata are obtained. It is defined as:

pθ(x0, ..., xT−1|xT ) =
T∏

t=1

pθ(xt−1|xt), (3)
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Fig. 2. Overview of the proposed StableVSR. We use the Temporal Conditioning Mod-
ule (Sect. 4.1) to turn a single image super-resolution LDM (denoising UNet) into a
video super-resolution method. TCM exploits the novel Temporal Texture Guidance
(Sect. 4.2), which provides TCM with spatially-aligned and detail-rich texture infor-
mation synthesized in adjacent frames. The sampling step is taken using the novel
Frame-wise Bidirectional Sampling strategy (Sect. 4.3). D represents the VAE decoder.
Green lines refer to progression in sampling time, while blue lines refer to progression
in video time. (Color figure online)

where pθ(xt−1|xt) = N (xt−1;μθ(xt, t), ΣθI). The variance Σθ can be a learnable
parameter [29] or a time-dependent constant [15]. A neural network εθ is trained
to predict ε from xt, and it can be used to estimate μθ(xt, t) as:

μθ(xt, t) =
1√
αt

(
xt − 1 − αt√

1 − αt
εθ(xt, t)

)
. (4)

As a consequence, we can sample xt−1 ∼ pθ(xt−1|xt) as:

xt−1 =
1√
αt

(
xt − 1 − αt√

1 − αt
εθ(xt, t)

)
+ σtz, (5)

where z ∼ N (0, I) and σt is the variance schedule. In practice, according to
Eq. 2, we can directly predict x̃0 from xt via projection to the initial state t = 0
as:

x̃0 =
1√
αt

(
xt − √

1 − αtεθ(xt, t)
)
. (6)

4 Methodology

We present Stable Video Super-Resolution (StableVSR), a method for video
super-resolution based on Latent Diffusion Models (LDMs) [30]. StableVSR
enhances the perceptual quality in VSR through temporally-consistent detail
synthesis. The overview of the method is shown in Fig. 2. Given a sequence of
N low-resolution frames {LR}N

i=1, the goal is to obtain the upscaled sequence
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{HR}N
i=1. StableVSR is built upon a pre-trained LDM for single image super-

resolution [30], which is turned into a VSR method through the design and the
addition of the Temporal Conditioning Module. TCM uses detail and structure
information synthesized in adjacent frames to guide the generative process of the
current frame. It allows obtaining high-quality and temporally-consistent frames
over time. We design the Temporal Texture Guidance to provide TCM with rich
texture information about the adjacent frames: at every sampling step, their pre-
dictions are projected to their initial state via Eq. 6, converted into RGB frames,
and aligned with the current frame via optical flow estimation and motion com-
pensation. We introduce in StableVSR the Frame-wise Bidirectional Sampling
strategy, where a sampling step is taken on all frames before advancing in sam-
pling time, and information is alternately propagated forward and backward in
video time. This alleviates the problem of error accumulation and balances the
information propagation over time. A brief description of the pre-trained LDM
for SISR [30] is provided in the supplementary material.

4.1 Temporal Conditioning Module

Applying the SISR LDM [30] to individual video frames introduces temporal
inconsistency, as each frame is generated only based on the content of a sin-
gle low-resolution frame. In addition, this approach does not exploit the con-
tent shared among multiple video frames, leading to suboptimal results [31].
We address these problems by introducing the Temporal Conditioning Module
into the SISR LDM [30]. The goal is twofold: (1) enabling the use of spatio-
temporal information from multiple frames, improving the overall frame quality;
(2) enforcing temporal consistency across frames. We use the information gener-
ated by the SISR LDM [30] in the adjacent frames to guide the generative process
of the current frame. In addition to obtaining temporal consistency, this solu-
tion provides additional sources of information to handle very small or occluded
objects. TCM injects temporal conditioning into the decoder of the denoising
UNet, as proposed in ControlNet [47].

4.2 Temporal Texture Guidance

The Temporal Texture Guidance provides TCM with the texture information
synthesized in adjacent frames. The goal is to guide the generative process of the
current frame toward the generation of high-quality and temporally-consistent
results.

Guidance on x̃0. Using results of the previous sampling step {xt}N
i=1 as guid-

ance to predict {xt−1}N
i=1, as proposed in [1,26], may not provide adequate

texture information along the whole reverse process. This is because xt is cor-
rupted by noise until t approaches 0, as shown in Fig. 3. We address this problem
by using a noise-free approximation of xt, i.e. x̃0, to be used as guidance when
taking a given sampling step t [12]. This is achieved by projecting xt to its ini-
tial state, i.e. t = 0, using Eq 6. Since x̃0 ≈ x0, it contains very little noise. In
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addition, it provides detail-rich texture information that is gradually refined as
t approaches 0, as shown in Fig. 3.

Temporal Conditioning. We need to use information synthesized in adjacent
frames to ensure temporal consistency. We achieve this by using x̃0 obtained from
the previous frame, i.e. x̃i−1

0 , as guidance when generating the current frame.
As x̃i−1

0 is computed from xi−1
t using εθ(xi−1

t , t,LRi−1) via Eq. 6, it contains the
texture information synthesized in the previous frame at sampling step t.

Spatial Alignment. Spatial alignment is essential to properly aggregate infor-
mation from multiple frames [3]. The texture information contained in x̃i−1

0 may
not be spatially aligned with respect to the current frame due to video motion.
We achieve spatial alignment via motion estimation and compensation, comput-
ing optical flow on the respective low-resolution frames LRi−1 and LRi. Directly
applying motion compensation to x̃i−1

0 in the latent space may introduce arti-
facts, as shown in Fig. 4. We address this problem by converting x̃i−1

0 from the
latent space to the pixel domain through the VAE decoder D [11] and then
applying motion compensation.

Fig. 3. Comparison between guidance on xt and x̃0. Compared to xt (first column), x̃0

computed via Eq. 6 contains very little noise regardless of the sampling step t (second
column). We can observe x̃0 is closer to x0 as t decreases (third column). Here, x0

corresponds to the last sampling step, i.e. when t = 1. In addition, x̃0 increases its
level of detail as t decreases (fourth column).

Formulation. Given the previous and the current low-resolution frames LRi−1

and LRi, the current sampling step t and the latent of the previous frame xi−1
t ,

the Temporal Texture Guidance H̃R
i−1→i

is computed as:

H̃R
i−1→i

= MC(ME(LRi−1
,LRi),D(x̃i−1

0 )), (7)
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where MC is the motion compensation function, ME is the motion estimation
method, D is the VAE decoder [11] and x̃i−1

0 is computed using εθ(xi−1
t , t,LRi−1)

via Eq. 6.

4.3 Frame-Wise Bidirectional Sampling Strategy

Progressing all the sampling steps on one frame and using the result as guid-
ance for the next frame in an auto-regressive manner, as proposed in [46], may
introduce the problem of error accumulation. In addition, unidirectional informa-
tion propagation from past to future frames may lead to suboptimal results [3].
We address these problems by proposing the Frame-wise Bidirectional Sampling
strategy: we take a given sampling step t on all the frames before taking the next
sampling step t − 1, alternately propagating information forward and backward
in video time. The pseudocode is detailed in Algorithm 1. Given the latent xi

t

at a sampling step t, the Temporal Texture Guidance H̃R
i−1→i

used by TCM
is alternately computed via Eq. 7 using x̃i−1

0 or x̃i+1
0 , respectively related to the

previous or the next frame. Information is propagated forward and backward in

Fig. 4. Comparison between applying motion compensation to x̃0 in the latent space
and to D(x̃0) in the pixel domain. D represents the VAE decoder. In the first scenario,
visible artifacts are introduced.

Algorithm 1. Frame-wise Bidirectional Sampling strategy. ME and MC are
“motion estimation” and “motion compensation”, respectively.
Input: Sequence of low-resolution frames {LR}N

i=1; pre-trained εθ for VSR, VAE decoder D; method
for ME.

1: for i = 1 to N do
2: xi

T = N (0, I)
3: end for
4: for t = T to 1 do
5: for i = 1 to N do � Take sampling step t on all the frames

6: ˜HR
i−1→i

= MC(ME(LRi−1,LRi), D(x̃i−1
0 )) if i > 1 � Eq. 7

7: ε̃ = εθ(x
i
t, t,LRi, ˜HR

i−1→i
) if i > 1 else εθ(x

i
t, t,LRi)

8: z = N (0, I) if t > 1 else 0

9: xi
t−1 = 1√

αt

(

xi
t − 1−αt√

1−αt
ε̃

)

+ σtz � Eq. 5

10: x̃i
0 = 1√

αt

(

xi
t − √

1 − αtε̃
)

� Eq. 6

11: end for
12: Reverse sequence order of {xt−1}N

i=1, {x̃0}N
i=1 and {LR}N

i=1
13: end for
14: return {HR}N

i=1 = {D(x0)}N
i=1
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video time: the current frame is conditioned by past frames during forward prop-
agation, and by future frames during backward propagation. Additional details
are provided in the supplementary material. The first and the last frames of the
sequence do not use TCM during forward and backward propagation, respec-
tively. This is in line with other methods [3,4].

4.4 Training Procedure

StableVSR is built upon a pre-trained LDM for SISR [30], hence we only need
to train the Temporal Conditioning Module.

Algorithm 2. Training procedure. ME and MC are “motion estimation” and
“motion compensation”, respectively.
Input: Dataset D with (LR, HR) pairs; pre-trained εθ for SISR, method for ME.
1: repeat
2: (LRi−1,HRi−1), (LRi,HRi) ∼ D

3: xi−1
0 , xi

0 = E(HRi−1), E(HRi)

4: εi−1, εi ∼ N (0, I)
5: t ∼ {0, ..., T}
6: ε̃i−1 = εθ(

√
αtx

i−1
0 +

√
1 − αtε

i−1, t,LRi−1)

7: x̃i−1
0 = 1√

αt

(

xi
t − √

1 − αtε̃
i−1)

� Eq. 6

8: ˜HR
i−1→i

= MC(ME(LRi−1,LRi), D(x̃i−1
0 )) � Eq. 7

9: Take gradient descent step on:

10: ∇θ(||εi − εθ(
√

αtx
i
0 +

√
1 − αtε

i, t,LRi, ˜HR
i−1→i

)||)
11: until convergence

We extend the ControlNet [47] training procedure by adding a step to com-

pute the Temporal Texture Guidance H̃R
i−1→i

from the previous frame to be
used for the current one. The pseudocode is detailed in Algorithm 2. Given two
(LR, HR) pairs of consecutive frames (LRi−1, HRi−1) and (LRi, HRi), we first
compute xi−1

0 and xi
0 by converting HRi−1 and HRi into the latent space using

the VAE encoder E [11]. We add ε ∼ N (0, I) to xi−1
0 via Eq. 2, obtaining xi−1

t .
We then compute x̃i−1

0 using xi−1
t and εθ(xi−1

t , t, LRi−1) via Eq. 6, and we obtain

H̃R
i−1→i

to be used for the current frame via Eq. 7. The training objective is:

E
t,xi

0,ε,LRi,˜HR
i−1→i [||ε − εθ(xi

t, t,LRi, H̃R
i−1→i

)||2], (8)

where t ∼ [1, T ] and xi
t is obtained by adding ε ∼ N (0, I) to xi

0 via Eq. 2.

5 Experiments

5.1 Implementation Details

StableVSR is built upon Stable Diffusion ×4 Upscaler1 (SD×4Upscaler), which
uses the low-resolution images as guidance via concatenation. SD×4Upscaler
1 https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler.

https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler
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uses a VAE decoder [11] with ×4 upscaling factor to perform super-resolution.
We use the same decoder in our StableVSR. The architecture details are
described in the supplementary material. In all our experiments, the results
are referred to ×4 super-resolution. We add the Temporal Conditioning Mod-
ule via ControlNet [47] and train it for 20000 steps. The training procedure
is described in Algorithm 2. We use RAFT [35] for optical flow computation.
We use 4 NVIDIA Quadro RTX 6000 for our experiments. We use the Adam
optimizer [18] with a batch size set to 32 and the learning rate fixed to 1e − 5.
Randomly cropped patches of size 256×256 with horizontal flip are used as data
augmentation. We use DDPM [15] sampling with T = 1000 during training and
T = 50 during inference.

Table 1. Quantitative comparison with state-of-art methods for VSR. Perceptual met-
rics are marked with �, reconstruction metrics with �, and temporal consistency met-
rics with •. Best results in bold text. All the perceptual metrics highlight the proposed
StableVSR achieves better perceptual quality. Temporal consistency metrics show that
StableVSR achieves better temporal consistency.

VSR method Vimeo-90K-T REDS4

tLP•↓ tOF•↓ LPIPS�↓ DISTS�↓ PSNR�↑ SSIM�↑ tLP•↓ tOF•↓ LPIPS�↓ DISTS�↓ PSNR�↑ SSIM�↑
Bicubic 12.47 2.23 0.289 0.209 29.75 0.848 22.72 4.04 0.453 0.186 26.13 0.729

ToFlow 4.96 1.53 0.152 0.150 32.28 0.898 – – – – – –

EDVR – – – – – – 9.18 2.85 0.178 0.082 31.02 0.879

TDAN 4.89 1.50 0.120 0.122 34.10 0.919 – – – – – –

MuCAN 4.85 1.50 0.097 0.108 35.38 0.934 9.15 2.85 0.185 0.085 30.88 0.875

BasicVSR 4.94 1.54 0.103 0.113 35.18 0.931 9.91 2.87 0.165 0.081 31.39 0.891

BasicVSR++ 4.35 1.75 0.092 0.105 35.69 0.937 9.02 2.75 0.131 0.068 32.38 0.907

RVRT 4.28 1.42 0.088 0.101 36.30 0.942 8.97 2.72 0.128 0.067 32.74 0.911

RealBasicVSR – – – – – – 6.44 4.74 0.134 0.060 27.07 0.778

StableVSR (ours) 3.89 1.37 0.070 0.087 31.97 0.877 5.57 2.68 0.097 0.045 27.97 0.800

5.2 Datasets and Evaluation Metrics

We adopt two benchmark datasets for the evaluation of the proposed StableVSR:
Vimeo-90K [45] and REDS [28]. Vimeo-90K [45] contains 91701 7-frame video
sequences at 448 × 256 resolution. It covers a broad range of actions and scenes.
Among these sequences, 64612 are used for training and 7824 (called Vimeo-90K-
T) for evaluation. REDS [28] is a realistic and dynamic scene dataset containing
300 video sequences. Each sequence has 100 frames at 1280 × 720 resolution.
Following previous works [3,4], we use the sequences 000, 011, 015, and 020
(called REDS4) for evaluation and the others for training.

We evaluate perceptual quality using LPIPS [48] and DISTS [9]. The results
evaluated with additional perceptual metrics [17,27,38] are reported in the sup-
plementary material. For temporal consistency evaluation, we adopt tLP [7] and
tOF [7], using RAFT [35] for optical flow computation. We also report recon-
struction metrics like PSNR and SSIM [43] for reference.
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5.3 Comparison with State-of-the-Art Methods

We compare StableVSR with other state-of-the-art methods for VSR, includ-
ing ToFlow [45], EDVR [40], TDAN [36], MuCAN [21], BasicVSR [3],
BasicVSR++ [4], RVRT [22], and RealBasicVSR [5]. Note that RealBasicVSR [5]
is a generative method based on GANs [14]. The quantitative comparison is
reported in Table 1.

Frame Quality Results. As shown in Table 1, StableVSR outperforms the
other methods in perceptual quality metrics. This is also confirmed by the quali-
tative results shown in Fig. 5: the frames upscaled by StableVSR look more nat-
ural and realistic. Additional results are reported in the supplementary material.
StableVSR and RealBasicVSR [5], due to their generative nature, can synthe-
size details that cannot be found in the spatio-temporal frame neighborhood.
This is because they capture the semantics of the scenes and synthesize miss-

Fig. 5. Qualitative comparison with state-of-the-art methods for VSR. The proposed
StableVSR better enhances the perceptual quality of the upscaled frames by synthe-
sizing more realistic details.

Fig. 6. Comparison of temporal profiles. We consider a frame row and track the changes
over time. The temporal profile of StableVSR is more regular than SD×4Upscaler and
more similar to the reference profiles than RealBasicVSR, reflecting a better consistency
over time. Results on sequences 000 and 015 of REDS4, respectively.
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ing information accordingly. Compared to RealBasicVSR [5], StableVSR gen-
erates more natural and realistic details, leading to higher perceptual quality.
In Table 1, we can observe StableVSR has poorer performance in PSNR and
SSIM [43]. This is in line with the perception-distortion trade-off [2]. Neverthe-
less, StableVSR achieves better reconstruction quality than bicubic upscaling
and RealBasicVSR [5].

Temporal Consistency Results. Both temporal consistency metrics in
Table 1 show StableVSR achieves more temporally-consistent results. We pro-
vide some demo videos as supplementary material to qualitatively assess this
aspect. In Fig. 6, we show a comparison among temporal profiles of RealBa-
sicVSR [5], which is the second-best method on REDS4 [28] according to tLP [7]
in Table 1, and the proposed StableVSR. We also report the temporal profiles of
SD × 4Upscaler, which represents the baseline model used by our method. The
temporal profiles of StableVSR are more regular and consistent with the refer-
ence profiles compared to the other methods, reflecting better consistency. In
Fig. 7, we compare the optical flow computed on consecutive frames obtained
from RVRT [22], which represents the second-best method on REDS4 [28]
according to tOF [7] in Table 1, and the proposed StableVSR. We also report
SD × 4Upscaler and RealBasicVSR [5] results. We can observe the proposed Sta-
bleVSR allows obtaining an optical flow more similar to the reference flow than
the other methods. RealBasicVSR [5] obtains second-best and worst results on
REDS4 [28] according to tLP [7] and tOF [7], respectively. Instead, the proposed
StableVSR obtains best performance according to both the metrics.

Fig. 7. Comparison of optical flow (visualized) computed using RAFT on different
state-of-the-art methods. Note that the hue represents the flow direction, while the sat-
uration represents the flow magnitude. The optical flow computed on StableVSR results
is more similar to the reference flow than the other methods. Results on sequences 000,
011 and 020 of REDS4, respectively.
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5.4 Ablation Study

Temporal Texture Guidance. We evaluate the effectiveness of the Tempo-
ral Texture Guidance design by removing one of the operations involved in its
computation. Quantitative and qualitative results are shown in Table 2 (upper
part) and Fig. 8a, respectively. Using guidance on xt instead of x̃0 leads to very
noisy frames. These noisy frames cannot provide adequate information when t is
far from 0. With no motion compensation, the spatial information is not aligned
with respect to the current frame and cannot be properly used. Applying motion
compensation in the latent space introduces distortions in the guidance, as also
shown in Fig. 4. In all these cases, temporal consistency at fine-detail level cannot
be achieved. The proposed approach provides detail-rich and spatially-aligned
texture guidance at every sampling step t, leading to better temporal consistency.
Additional results are reported in the supplementary material.

Frame-Wise Bidirectional Sampling Strategy. We compare the Frame-wise
Bidirectional Sampling strategy with: single-frame sampling, i.e. no temporal
conditioning; auto-regressive sampling, i.e. the previous upscaled frame is used
as guidance for the current one; frame-wise unidirectional sampling, i.e. only
forward information propagation. The results are quantitatively and qualita-
tively evaluated in Table 2 (bottom part) and Fig. 8b, respectively. Single-frame
sampling leads to poor results and introduces temporal inconsistency due to
the differences in the synthesized frame details. The auto-regressive approach
has the problem of error accumulation, which is propagated to the next frames.
Unidirectional sampling unbalances the information propagation, as only future
frames receive information from the past ones, limiting the overall performance.
The proposed Frame-wise Bidirectional Sampling solves these problems, leading
to better and more consistent results.

Table 2. Ablation experiments, quantitative results. Perceptual metrics are marked
with �, reconstruction metrics with �, and temporal consistency metrics with •. Best
results in bold text. For “No guidance on x̃0” experiment, we use guidance on xt. In
these experiments, the proposed solution achieves better results in terms of frame qual-
ity and temporal consistency. Results computed on center crops of 512×512 resolution
of REDS4.

Ablated component Experiment name tLP•↓ tOF•↓ LPIPS�↓ DISTS�↓ PSNR�↑ SSIM�↑
Temporal Texture Guidance No guidance on x̃0 38.16 3.34 0.132 0.094 24.74 0.698

No motion comp. 18.97 3.47 0.116 0.077 25.70 0.749

No Latent → RGB conv. 21.17 3.32 0.113 0.076 25.78 0.752

Proposed 6.16 2.84 0.095 0.067 27.14 0.799

Frame-wise Bidirectional Sampling Single-frame 14.67 3.99 0.121 0.087 25.49 0.729

Auto-regressive 8.61 3.39 0.120 0.082 25.78 0.745

Unidirectional 6.36 2.94 0.097 0.069 27.08 0.769

Proposed 6.16 2.84 0.095 0.067 27.14 0.799
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6 Discussion and Limitations

Reconstruction Quality Results. We focus on using DMs to enhance the
perceptual quality in VSR. Under limited model capacity, improving perceptual
quality inevitably leads to a decrease in reconstruction quality [2]. Recent works
on single image super-resolution using DMs [13,20,34] reported lower recon-
struction quality when compared to regression-based methods [6,23]. This is
related to the high generative capability of DMs, which may generate some pat-
terns that help improve perceptual quality but negatively affect reconstruction
quality. Although most VSR methods target reconstruction quality, various stud-
ies [24,31] highlight the urgent need to address perceptual quality. We take a
step in this direction. We believe improving perceptual or reconstruction quality
is a matter of choice: for some application areas like the military, reconstruction
error is more important, but for many areas like the film industry, gaming, and
online advertising, perceptual quality is key.

Model Complexity. The overall number of model parameters in StableVSR
is about ×35 higher than the compared methods, with a consequent increase
in inference time and memory requirements. The iterative refinement process of
DMs inevitably increases inference time. StableVSR takes about 100 s to upscale
a video frame to a 1280 × 720 target resolution on an NVIDIA Quadro RTX 6000

Fig. 8. Ablation experiments, qualitative results. For “No guidance on x̃0” experiment,
we use guidance on xt. For “No Latent→RGB conversion” experiment, the aligned
latent is converted to RGB just for visualization.
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using 50 sampling steps. In future works, we plan to incorporate current research
in speeding up DMs [25,49], which allows reducing the number of sampling steps
and decreasing inference time.

7 Conclusion

We proposed StableVSR, a method for VSR based on DMs that enhances the
perceptual quality while ensuring temporal consistency through the synthesis of
realistic and temporally-consistent details. We introduced the Temporal Condi-
tioning Module into a pre-trained DM for SISR to turn it into a VSR method.
TCM uses the Temporal Texture Guidance with spatially-aligned and detail-rich
texture information from adjacent frames to guide the generative process of the
current frame toward the generation of high-quality results and ensure tempo-
ral consistency. At inference time, we introduced the Frame-wise Bidirectional
Sampling strategy to better exploit temporal information, further improving
perceptual quality and temporal consistency. We showed in a comparison with
state-of-the-art methods for VSR that StableVSR better enhances the percep-
tual quality of upscaled frames while ensuring superior temporal consistency.
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