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Abstract—This paper presents a comparative study of various
efficient state-of-the-art image segmentation models applied to
the challenging task of food localization in trays in canteen
environments. Using the UNIMIB2016 dataset, which comprises
images of canteen trays with multiple food items, we evaluate the
performance of ten deep learning-based methods in terms of their
segmentation accuracy measured by the Jaccard Index, and com-
putational efficiency measured by Multiply-Accumulate (MACs)
operations and the number of parameters. Our results illustrate
a trade-off between computational demand and accuracy, with
DABNet achieving the highest accuracy but at a cost of lower
efficiency compared to others, while models like ENet or EDANet
offer a balanced solution suitable for real-time applications. The
study not only benchmarks these models but also discusses the
implications of different architectural choices, such as the use of
dilated and depth-wise convolutions, which influence the models’
performance. This work aims to guide the selection of appropriate
segmentation models for dietary management systems in canteen
settings, contributing to advancements in automated food service
operations and dietary monitoring.

Index Terms—Food localization, semantic segmentation, can-
teen automatization, industry 4.0

I. INTRODUCTION

The rapid advancement in computer vision and image anal-
ysis has paved the way for innovative applications in various
fields, notably in environments where automation and accuracy
are crucial. One such application is food segmentation in
canteen environments, which involves distinguishing between
food items and non-food items within digital images [1], [2].
This task is foundational for numerous applications, including
automated calorie estimation, waste management, and the
enhancement of operations in the food industry service [3].

Canteens, whether in educational institutions, corporate
offices, or public facilities, serve thousands of meals daily,
necessitating efficient management and operation. Automat-
ing the process of identifying and analyzing what is on a
plate can significantly contribute to more sustainable and
health-conscious food management [4], [5]. By employing
food segmentation techniques, it becomes feasible to monitor
consumption patterns, manage inventory more effectively, and
reduce food waste by adapting offerings according to real-time
data on food preferences and consumption [6], [7].

Figure 1 shows an example of use of food localization. In
a canteen scenario, customers fill the trays with the food and,
at checkout, an intelligent system using computer vision and
deep learning techniques (e.g. [5], [8]) automatically analyzes
the trays providing information on the meal to be consumed.

Fig. 1. Food localization in the context of a canteen scenario.

This information can then be exploited by the canteen to plan
future food supply, and by the consumers to fill a food diary.

Moreover, the segmentation of food items from their sur-
roundings and other non-food elements in canteen settings
poses unique challenges. These include variations in food
appearance due to cooking style, presentation, and overlapping
items, as well as differing lighting conditions and background
complexities [8]. Addressing these challenges requires robust
algorithms that can generalize across various environments and
conditions, making this an active area of research [9].

This paper aims to compare existing state-of-the-art ma-
chine learning techniques for food segmentation, evaluating
their effectiveness on a dataset specifically curated to reflect
the diverse and dynamic nature of canteen settings. Through
this comparative analysis, we aim to identify which techniques
are most effective and efficient, thereby contributing to the
broader field of automated image processing in real-world
applications and setting a benchmark for future innovations
in the domain.

In summary, the contributions of this paper are as follows:

• We conduct a thorough comparison of multiple state-
of-the-art image segmentation models on a carefully
annotated food tray dataset.

• We assess model performance not only based on seg-
mentation accuracy using the Jaccard Index but also
consider the computational efficiency, measured in terms
of Multiply-Accumulate (MACs) operations and the num-
ber of parameters, highlighting the trade-offs between
accuracy and computational demand.

• We provide insights into the impact of different architec-
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tural choices, such as the use of dilated convolutions and
depth-wise separable convolutions, on the performance of
the models.

• We discuss the practical implications of each model’s
performance, offering guidance for selecting appropriate
models for real-time food segmentation in canteen envi-
ronments, thus enhancing the operational efficiency and
dietary management in these settings.

II. RELATED WORKS

Image segmentation has evolved dramatically with deep
learning technologies, particularly when applied to real-time
and mobile applications. The necessity for efficient com-
putational strategies has led to the development of various
techniques aimed at optimizing the performance of neural net-
works while minimizing resource usage. This section briefly
introduces the foundational methods employed across differ-
ent state-of-the-art architectures before delving into specific
network designs.

A. Techniques for Efficient Image Segmentation

Dilated Convolutions: One prominent technique for enhanc-
ing the field of view in convolutional networks without
increasing the number of parameters is the use of dilated
convolutions [10]. By spacing out the kernel elements, dilated
convolutions cover a larger input area, capturing more con-
textual information without the computational cost associated
with larger kernels. This method is particularly useful in dense
prediction tasks like semantic segmentation where capturing
spatial hierarchies at different scales is crucial.
Depth-wise Separable Convolutions: Popularized by archi-
tectures like MobileNet [11], depth-wise separable convo-
lutions [12] significantly reduce computational complexity
and model size. This technique breaks down the convolution
operation into two layers: a depth-wise convolution that ap-
plies a single filter per input channel, and a 1×1 point-wise
convolution that combines the output channels. This approach
reduces the computational cost and the number of parameters
dramatically, enabling more efficient processing without a
substantial drop in performance [13].
Kernel Decomposition: Another method to reduce the com-
putational burden is kernel decomposition [14], where a
standard convolutional kernel is decomposed into smaller,
more manageable kernels. For example, a 3×3 kernel can be
decomposed into a combination of 1×3 and 3×1 convolutions,
reducing the parameter count and computational complexity.
This technique often appears in networks aiming to balance
accuracy and efficiency.

B. Types of Residual Blocks

Residual blocks, particularly those used in ResNet archi-
tectures [15], have been pivotal in enabling the training of
very deep networks by using skip connections to mitigate the
vanishing gradient problem. Different variations of residual
blocks have been adapted to further enhance the efficiency of
semantic segmentation networks:

Bottleneck Blocks: These blocks reduce the dimensionality
at the first layer, process activations through a smaller dimen-
sional space, and then restore the dimensions at the last layer,
which saves a significant amount of computation especially
when the input and output dimensions are large.
Bottleneck-1D Blocks: Adapted for more efficiency, these
blocks modify the bottleneck structure by using 1D con-
volutions, which can reduce the computational cost while
still maintaining effective channel interactions and spatial
hierarchy.
Non-Bottleneck Blocks: These blocks do not reduce the
channel dimensions but may incorporate mechanisms like
dilated convolutions and separable convolutions to enhance
feature extraction without excessive computation.
Non-Bottleneck-1D Blocks: Combining the features of non-
bottleneck design with 1D convolutions, these blocks aim
to provide an efficient pathway for maintaining spatial rela-
tionships and channel-wise feature processing with reduced
computational demands.

Employing these techniques and block designs, modern
architectures strive to achieve a delicate balance between
computational efficiency and segmentation accuracy.

C. Decoding and Upsampling Techniques in Image Segmen-
tation

Decoding Strategies: In pursuit of efficiency, several semantic
segmentation architectures opt to modify or entirely skip the
decoding process. Typically, this results in faster inference
times at the expense of output resolution, which can be crucial
for applications requiring fine-grained detail. For example,
some methods, like DABNet [16] and EDANet [17], choose a
minimalist approach where they generate coarse segmentation
maps directly from low-dimensional representations without
traditional decoding. This strategy is beneficial in scenarios
where speed is more critical than pixel-perfect accuracy.
Full convolutions: Also known as deconvolutions, transposed
convolutions or fractionally strided convolutions, full convo-
lutions are a common method for upsampling and are often
used to reverse the spatial downsampling effect of conventional
convolutions [18]. This technique involves padding zeros in
the input data, which allows the convolution to upsample
the feature map instead of reducing its size. Networks like
ENet [19] use transposed convolutions to gradually restore the
feature map dimensions to that of the input image, facilitating
fine detail in the output segmentation.
Max Unpooling: the max-pooling indices recorded during the
downsampling phase are used to perform non-linear upsam-
pling in the decoder. This method directly uses the spatial
positions from the pooling process to guide the placement
of values in the upsampling phase, thus helping to better
reconstruct the structure of the input image without additional
parameters.
Two-Branch Systems: FastSCNN [20] and ContextNet [21]
illustrate architectures employing a two-branch system where
one branch processes the input at full resolution to preserve
spatial details, and another branch processes a downsampled
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version to efficiently extract high-level semantic information.
The features from both branches are then merged, balancing
detail and context in the final segmentation output. This
method effectively captures both fine and coarse features,
which are crucial for accurate segmentation.
Bilinear Upsampling: Some networks opt for bilinear up-
sampling due to its simplicity and efficiency, as it does not
involve learning any additional parameters. This technique
uses linear interpolation to estimate the values at upscaled
positions, providing a smooth and computationally light way
to increase the resolution of feature maps. LEDNet [22] and
several other models utilize bilinear upsampling to efficiently
produce higher-resolution outputs from encoded features.
Attention Mechanisms in Upsampling: Incorporating atten-
tion mechanisms during the upsampling process is a newer
trend aimed at enhancing the model’s focus on relevant fea-
tures during reconstruction. Networks like FPENet [23] use
an attention-based module to selectively emphasize important
features and suppress less useful ones, improving the clarity
and accuracy of the segmented output. This approach is
particularly effective in complex scenes where differentiation
between objects and background can be challenging.

Each of these techniques provides a different balance of
accuracy, computational efficiency, and resource requirements.
They reflect the diverse strategies employed by researchers to
tackle the challenges inherent in real-time semantic segmen-
tation, particularly in resource-constrained environments. The
choice of technique often depends on the specific requirements
and constraints of the application at hand, such as the need
for speed over resolution or vice versa.

III. DEEP LEARNING MODELS UNDER INVESTIGATION

This section provides a detailed overview of the ten state-
of-the-art deep learning-based image segmentation models that
were evaluated in this study for the task of food localization.
DABNet [16] addresses the trade-off between accuracy and in-
ference speed essential for autonomous systems by introducing
a Depth-wise Asymmetric Bottleneck module. This module
utilizes depth-wise asymmetric and dilated convolutions to
enhance computational efficiency. DABNet demonstrates a
balance between speed and precision, making it a viable option
for real-time semantic segmentation.
ESNet [24] and EDANet [17] both focus on enhancing the
efficiency of convolutional operations. ESNet uses factorized
convolutions and a symmetric network design to reduce com-
putational demand while maintaining high accuracy. In con-
trast, EDANet leverages an asymmetric convolution structure
and dense connectivity to optimize both computational cost
and model size for high-speed inference.
ENet [19], designed for tasks requiring low latency, is another
prominent architecture that significantly reduces the computa-
tional burden compared to traditional methods. It achieves this
by focusing on early downsampling, allowing it to be much
faster and less resource-intensive while maintaining reasonable
accuracy.

Fig. 2. Examples of tray images in the UNIMIB2016 dataset.

Fig. 3. Examples food annotations in the UNIMIB2016 dataset.

CGNet [26] proposes a Context Guided Network utilizing
a novel block that efficiently processes local and global
context information, which is crucial for accurate semantic
segmentation. This model is particularly designed for mobile
devices, offering a substantial reduction in parameter count
while improving segmentation accuracy.
FastSCNN [20] and ContextNet [21] both introduce inno-
vative methods to combine low-level feature extraction with
high-level semantic information efficiently. FastSCNN em-
ploys a dual-branch approach that merges features at differ-
ent resolutions, optimizing both accuracy and computational
speed. Similarly, ContextNet utilizes a pyramid representation
to balance detail and context, achieving effective segmentation
at higher frame rates.
FSSNet [25], FPENet [23], and LEDNet [22] each propose
solutions to optimize the trade-offs between model complexity,
inference speed, and accuracy. FSSNet uses a factorized archi-
tecture with dilated convolutions to enhance the field of view
without excessive parameter increase. FPENet and LEDNet
focus on encoding multi-scale contextual features and employ-
ing novel network components like attention mechanisms to
improve both performance and efficiency.

IV. EXPERIMENTAL SETUP

A. Dataset

As the evaluation dataset we consider the UNIMIB2016
dataset [27], that is widely used in several research works. The
dataset is publicly available at http://www.ivl.disco.unimib.
it/activities/food-recognition/ and is designed to support the
development and evaluation of food recognition algorithms,
particularly for dietary monitoring applications in canteen
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TABLE I

MAIN CHARACTERISTICS OF STATE-OF-THE-ART MODELS FOR EFFICIENT IMAGE SEGMENTATION.

Model Architecture Layers Upsampling technique Convolution

Encoder Decoder dual path activation func. Residual Layer dilated depth-wise factoriz.

ESNet [24] ResNet [15] Custom ReLU PFCU Transposed Conv. ✓ ✓
ENet [19] Custom Custom PReLU BottleNeck Transposed Conv. ✓ ✓

FSSNet [25] ResNet [15] Custom PReLU BottleNeck-1D Bilinear + Transposed ✓ ✓
FPENet [23] Custom Custom ReLU BottleNeck-1D MEU (Bilinear + attention) ✓ ✓
LEDNet [22] ResNet [15] Custom ReLU BottleNeck-1D Bilinear ✓ ✓
DABNet [16] Custom No decoder (/3) ReLU Non-BottleNeck-1D ✓ ✓ ✓
EDANet [17] Custom No decoder (/8) ReLU BottleNeck-1D ✓ ✓
CGNet [26] Custom No decoder (/8) PReLU Non-BottleNeck ✓ ✓

FastSCNN [20] MobileNet-V2 [11] No decoder (/1) ✓ ReLU BottleNeck Merge with full res. branch ✓
ContextNet [21] MobileNet-V2 [11] No decoder (/1) ✓ ReLU6 BottleNeck Merge with full res. branch ✓ ✓

settings. It comprises 1,027 images of canteen trays, each
presenting multiple food items in various arrangements, for
a total of 3,616 food instances across 73 distinct food classes.
Figure 2 shows some example of tray images in the dataset.
Each food item within the dataset has been meticulously
segmented using polygonal boundaries to create high-quality
ground truth annotations (see Figure 3).

To adapt this dataset for the specific task of food and non-
food detection, binary masks have been created that differen-
tiate food items from non-food background elements on each
tray. This modification facilitates the training of segmentation
models that can accurately identify and isolate food regions
from the surrounding environment.

B. Training

The training process for our food segmentation models
employs the Adam optimizer. We set the learning rate to
0.0001, and we optimize the models using binary cross-
entropy as the loss function.

C. Metrics

To evaluate the performance of our segmentation models,
we use the binary Jaccard index, also known as the Intersection
over Union (IoU) metric. Formally, it is:

Jaccard Index (IoU) =
∑N

i=1(pi ∧ gi)∑N
i=1(pi ∨ gi)

(1)

where pi represents the predicted set of food pixels and gi is
the ground truth of the i-th sample.

D. Hardware

The experiments were conducted on a machine equipped
with an Intel Core i7 processor and an NVIDIA TITAN Xp
graphics card, which features 12 GB of dedicated memory.

V. RESULTS

The results of this evaluation are summarized in Table II,
which lists the Jaccard Index scores for each model tested
on the UNIMIB2016 dataset. Additionally, Figure 5 visually
represents these models in a bidimensional space where the
x-axis shows the Multiply-Accumulate (MACs) operations
and the y-axis the Jaccard Index performance. The size of
each dot is proportional to the number of parameters in

TABLE II
COMPARISON OF SEGMENTATION ACCURACY (JACCARD INDEX) AND

COMPUTATIONAL REQUIREMENTS (MAC) FOR EFFICIENT SEGMENTATION
MODELS IN FOOD LOCALIZATION ON THE UNIMIB2016 DATASET.

Model Jaccard Index ↑ MAC (M) ↓
DABNet [16] 93.50% 1314
ESNet [24] 93.44% 3382

EDANet [17] 93.41% 1115
ENet [19] 92.81% 616

CGNet [26] 92.64% 884
FastSCNN [20] 91.96% 221
ContextNet [21] 91.90% 222

FSSNet [25] 91.72% 564
FPENet [23] 89.99% 192
LEDNet [22] 83.99% 1451

Fig. 4. Graph illustrating the performance of the efficient segmentation
models under investigation, applied to food localization on the UNIMIB2016
dataset. The plot shows a general linear relationship between MACs (Multiply-
Accumulate Operations) and segmentation performance. Notably, LEDNet
deviates from this trend with lower-than-expected performance, while ESNet
exhibits higher MACs with minimal performance gains. Additionally, the size
of each circle represents the number of parameters in the model, indicating
the model complexity.

the model, providing a clear visualization of the trade-offs
between computational complexity and segmentation accuracy.

DABNet emerged as the top-performing model with a
Jaccard Index of 93.50%, despite having a lower MACs
value compared to both ESNet and LEDNet. This highlights
DABNet’s efficiency in achieving high segmentation accuracy
with comparatively fewer computational resources.
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The analysis reveals that models utilizing bottleneck and

non-bottleneck residual layers, such as ENet and ESNet,
perform differently. ENet, which uses bottleneck layers, and
DABNet, employing non-bottleneck-1D blocks, demonstrate
that less restrictive feature processing can sometimes yield
better performance. Moreover, the inclusion of dilated con-
volutions in models like SQNet and ERFNet enhances their
ability to capture detailed spatial hierarchies effectively, which
is reflected in their high performance.

Conversely, models designed with a strong focus on effi-
ciency, such as LEDNet and FastSCNN, show some of the
lowest performance metrics. This underscores a notable trade-
off between efficiency and segmentation accuracy, highlighting
the challenge of balancing these aspects in practical applica-
tions.

Furthermore, ContextNet demonstrates efficient perfor-
mance with its pyramid representation for capturing context
at various scales, offering a good balance between speed and
accuracy. FPNet, which uses a feature pyramid to encode
multi-scale contextual features, shows promise but may require
further optimization to improve its efficiency and effectiveness
in segmenting detailed food items.

In conclusion, while advanced architectural features like
depth-wise and dilated convolutions offer significant computa-
tional advantages, they must be carefully balanced to maintain
high performance in segmentation tasks. For real-time applica-
tions in environments like canteens, where both efficiency and
accuracy are critical, the choice of model architecture might
lean towards those like EDANet or ENet and CGNet which
provide a good balance. Future work could explore combining
these efficient designs with lightweight attention mechanisms
or advanced upsampling techniques to further enhance both
speed and performance.

VI. CONCLUSION

This study assessed ten state-of-the-art image segmentation
models on the UNIMIB2016 dataset designed for food recog-
nition in canteen environments, identifying a balance between
efficiency and accuracy as crucial for real-time applications.

DABNet achieves the best accuracy score in terms of
Jaccard Index. It is less efficient when compared to other
models like ESNet and EDANet that obtained comparative
accuracy with fewer parameters. These models can be valid
alternatives if efficiency is of paramount importance, such as
in scenarios requiring the use of compact edge devices. Our
analysis and comparison will help researchers and practitioners
to select models offering the best trade-off in terms of food
localization accuracy and computation efficiency.

Future research should explore several directions to address
the identified limitations and enhance the generalizability and
applicability of the findings. Firstly, we plan to perform
the same assessment on additional datasets that include a
wider variety of food types, tray arrangements, and lighting
conditions to thoroughly evaluate the generalization capability
of the compared methods. Future research should also explore
hybrid architectures that combine efficient and self-expanding

convolution techniques, and integrate attention mechanisms to
enhance model focus on salient features. Expanding the dataset
to include diverse food types and environments, alongside
testing models in real-world settings, will help improve the
robustness and applicability of segmentation technologies.
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