

979-8-3503-6213-8/24/$31.00 ©2024 IEEE

Dynamic Hashtag Assignment: Leveraging Graph
Convolutional Networks with Class Incremental

Learning
Matteo Kolyszko, Marco Buzzelli, Simone Bianco

Department of Informatics, Systems and Communication
Università degli Studi di Milano-Bicocca

Milan, Italy

Abstract—The use of hashtags plays a pivotal role in various
applications. They have proven effective in social data mining,
aiding information retrieval, sentiment analysis, event detection,
and topic tracking. However, many users fail to include hash-
tags, leaving a vast amount of content unnoticed. As a result,
automating hashtag recommendations has become essential. This
work introduces a novel class incremental learning approach for
personalized hashtag recommendations using Graph Convolu-
tional Networks (GCNs), leveraging image content and trending
topics. In order to simulate the dynamic nature of social media
trends and to validate the adaptability of our model to changing
contexts, we create an extension of the popular HARRISON
dataset by adding a temporal component. We investigate our
solution’s sensitivity to different approches and availability of
training samples. The results presented show that our model
can effectively adapt in different scenarios, whether old data
is available or not at each training iteration, also through the
use of different correlation matrices to mitigate computational
and memory load. As far as we know, this work is the first
incremental learning attempt at hashtag recommendation for
real-world images in social networks. We expect this benchmark
to accelerate the advancement of hashtag recommendation.

Index Terms—class incremental learning, graph convolutional
network, hashtag recommendation

I. INTRODUCTION

Social media platforms have had a significant impact on
events and opinions on a wide range of topics. Social media
platforms provide a broad view of user behavior. Users tend
to converse with others who share their interests. Users can
use hashtags to annotate their postings. Hashtags are abstract
topic labels that are widely used in a variety of applications,
including content categorization, organizing, navigation, and
query expansion. Because hashtags are more inclusive and
informative, many prior works have proved the effectiveness of
hashtags in social data mining, such as information retrieval,
sentiment analysis, event detection, and topic tracking. It
has been observed that Instagram posts with even just one
hashtag can boost user participation by 12.6% [8]. According
to the same statistics, 95 million photographs are shared on
Instagram daily. Only a few individuals tag their posted work
with hashtags. A massive amount of contents is unnoticed due
to their unwillingness or lack of knowledge. As a result, it

has become critical to automate the hashtag recommendation
process in order to identify relevant hashtags for social media
posts.

There are two challenges related to automatic hashtag
assignment: understanding the context, keeping the model
updated. Understanding the context for automatic hashtag as-
signment involves grasping semantic, temporal, cultural, user-
specific, conversational, and sentiment aspects to accurately
assign hashtags to images. Keeping the model updated is
vital and can be achieved through Class Incremental Learn-
ing (CIL), but it presents unique challenges for multi-label
classification tasks like hashtag assignment. These challenges
include concept drift, managing label combinations, avoiding
overfitting, handling sparse labels, and developing continuous
evaluation strategies for evolving datasets.

In this paper: I. We propose a deep incremental learning
approach for personalized hashtag recommendation. II. We
formulate the hashtag recommendation as a incremental clas-
sification problem, adopting the use of Graph Convolutional
Network (GCN) [1]. III. We propose the use of a different
correlation matrix, compared to [1], which only takes into
account the new labels at each incremental stage in order
to optimize computational and memory resources. IV. We
propose a new method for training the model using only new
data at each incremental stage, compared to the state-of-the-art
methods which use both old and new data.

II. STATE OF THE ART

A. Hashtag Recommendation

Hashtag recommendation models can be divided in two
main categories:

1) Feature-Based Approach: This approach delves into the
content of social media posts to suggest relevant hash-
tags. It is divided into Content-Based and Personalized
Hashtag Recommendation.
Content-Based recommendation focuses on the text,
images, and multimedia aspects of posts. For text,
methods like topic and translation models or extracting
information from external sources are employed [19].

19

20
24

 IE
EE

 8
th

 F
or

um
 o

n
Re

se
ar

ch
 a

nd
 T

ec
hn

ol
og

ie
s f

or
 S

oc
ie

ty
 a

nd
 In

du
st

ry
 In

no
va

tio
n

(R
TS

I)
|

97
9-

8-
35

03
-6

21
3-

8/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
RT

SI
61

91
0.

20
24

.1
07

61
21

4

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

Image-centric approaches utilize Convolutional Neural
Networks (CNNs) to extract features and suggest hash-
tags [18]. Additionally, there are approaches integrating
both visual and textual information for more accurate
suggestions [17]. However, these approaches might over-
look individual user preferences.
In contrast, Personalized Hashtag Recommendation
takes into account user tagging behavior, historical posts,
and platform interactions to suggest hashtags tailored to
individual users, enhancing user experience [16].

2) Method-Based Approach: This approach employs var-
ious methods for hashtag recommendation, includ-
ing Similarity-Based, Topic Modeling-Based, Neural
Network-Based, and Joint Modeling of Text and Image.
Similarity-Based methods compare new posts with ex-
isting ones and suggest similar hashtags [20]. Topic
Modeling-Based techniques, such as Latent Dirichlet
Allocation (LDA), identify themes in posts to suggest
relevant hashtags [21]. Neural Network-Based methods
include classification-based, treating recommendation as
a classification problem using deep learning models
[17], and generation-based, employing recurrent neural
networks (RNNs) to generate hashtags sequentially [22].

B. Class incremental Learning

The goal of Class Incremental Learning (CIL) is to create
algorithms that can learn new concepts sequentially and finally
perform well across all observable classes [10]. To extend a
trained model to new classes, a considerable amount of labeled
data from both new and old classes is required for network
finetuning. Otherwise, if the previous class dataset is no longer
available, fine-tuning a deployed model with new classes
can result in catastrophic forgetting [11] - [13]. Catastrophic
forgetting occurs when a model degrades performance on old
classes after being retrained on new ones.

The problem of CIL has been handled using many ways,
which can be classified into three major categories:

1) Replay methods: these works save samples of previous
classes that are repeated when learning a new activity,
hence reducing forgetfulness. The samples are either
reused as model inputs for rehearsal or used to constrain
the loss optimization for subsequent jobs.

2) Regularization-based methods: These works do not re-
tain raw data, which reduces memory needs. An extra
regularization term is inserted into the loss function,
allowing you to learn new classes while keeping your
previous knowledge.

3) Parameter isolation methods: The methods in this class
use separate model parameters for each task.

The taxonomy is based on the works by Liu et al. [14] and
Delange et al. [15], where additional references can be found.

III. PROPOSED METHOD

The CIL proposed in this work aims to simulate a real-
world case in which the model can learn continuously and
autonomously from new images and corresponding hashtags.

Assuming a scenario where users continuously share new
images and assign relevant hashtags to them. With Class
Incremental Learning, the model can be updated in real-time,
integrating new data without having to start from scratch.

For example, if a user uploads a sunset image with the
hashtag #sunset, the model can learn from the image and its
context to improve its recommendation capabilities. Further-
more, if new related hashtags are added in the future, such
as #landscape or #nature, the model can integrate these new
classes of images into its existing dataset without requiring a
complete reprocessing.

On the other hand, some hashtags over time can become
irrelevant or outdated, which is why it has been decided to
maintain a fixed number of classes. Only the hashtags most
used by users at a specific moment in time, t, are considered
by the model.

Fig. 1. Training pipeline devised for incremental hashtag assignment.

The CIL pipeline, visible in Fig. 1, is divided into three
main stages:

1) Identification of the most frequent hashtags.
2) Classifier Setup.
3) Classifier Training.

A. Identification of the most frequent hashtags

At each iteration, new images are introduced, each with
corresponding hashtags. Once the new data is obtained, the
most frequent hashtags among the new images are determined.

B. Classifier Setup

Beginning with the second iteration, the model requires
configuration. Since new classes may have become the most
frequent or the order of those classes may have changed, the
model’s output layer must be updated accordingly to reflect the
newly identified classes. This configuration allows the model
to adapt to the new classes and retain the knowledge gained.

After loading the model, we extract the weights of the output
layer, which corresponds to the first fully connected layer (fc).
These weights represent the learned representations for each
class in the previous iteration.

Next, we compute the average weights across all existing
classes. This step involves computing the mean of the output
layer weights along the class dimension, resulting in a vector
of average weights.

We iterate over the new class order of the new iteration
obtained from the dataset. For each new class absent in the
previous iteration, we append the average weights computed
in the previous step. This ensures that the model has initialized
weights for any newly introduced classes.

20

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

With weights initialized for all classes in the new order, we

reorganize the weights based on the updated class order. To
achieve this, we align the weights with the model’s class-to-
index mapping, ensuring consistency between the weights and
class labels.

Finally, we replace the original output layer weights with
the updated weights. By doing so, the model’s output layer is
effectively updated to reflect the new class order, enabling it
to make predictions according to the revised class distribution.

C. Classifier Training

For this stage we will use the Prediction Learning GCN
(P-GCN) which was introduced by Zhao-Min Chen et al.
[1] in 2021 to perform multi-label classification. The entire
model framework is mainly composed of three modules,
namely the Image Representation Learning module, the Label-
Aware Modulation module and the GCN Based Image-Level
Prediction Score Learning module.

Image Representation Learning. Given an image, a CNN
is used to learn the representation of the image and global
max-pooling is exploited to obtain at the image level the
representation x ∈ RD.

Label-Aware Modulation. This module is used to decom-
pose the global image representation x of an image into a
set of label-specific characteristics. This is accomplished by
first applying plain classifiers, which can be implemented as
a fully-connected layer on x.

ycls = ffc(x; θfc), (1)

where θfc ∈ RC×D denotes the parameters of the plain
classifiers. Each classifier θcfc ∈ RD extracts the information
relevant to class c and predicts the emergence of class c in
the image. Then, the disentangled label-relevant features are
obtained via

Zlam = repeat(x)⊙ θfc ∈ RC×D, (2)

where repeat(x) denotes the operator which copies x ∈ RD

C times to form[x, ..., x]⊤ ∈ RC×D and ⊙ represents the
Hadamard product. By modulating the image feature x in
this way, the modulated feature Zc

lam ∈ RD captures the
information associated with class c.

GCN Based Image-level Prediction Score Learning. With
the disentangled image features associated to different classes,
we use GCNs to map these features Zlam into the predic-
tion scores ygcn for this image. Thanks to the information
propagation in GCNs guided by the correlation matrix, the
prediction scores tend to maintain the inter-class relationships.
In details, for the first GCN layer, the inputs are the label-
relevant representations Zlam. For the last layer, the outputs
are inter-dependent prediction scores ygcn ∈ RC . Eventually,
we combine the prediction scores obtained from both the plain
classifiers and the GCNs to serve as the final prediction scores
for the image. That is

ŷ = ycls + ygcn (3)

GCNs work by propagating information between nodes
based on the correlation matrix. Thus, how to build the
correlation matrix is a crucial problem for the P-GCN. The
first matrix we built, called Augmented Correlation Matrix
(ACM) was proposed by Kaile et al in 2022 [3].

In this configuration the training data Dt
trn and the ACM

At for task t, are passed to the P-GCN classifier. At each
completed task the model configuration is saved so that the
soft labels ẑ for the next task can be derived.
The use of ACM, however, presents some problems:

1) Exponential Growth: As new classes are added, the size
of the ACM grows exponentially. This can lead to a
significant increase in the memory required to store and
manipulate such data.

2) Computational Complexity: Operations on the ACM can
become computationally intensive and time-consuming.
This can adversely affect the performance of the model.

Therefore, a second Correlation Matrix (CM) is built, in-
spired by Chen et al. [2]. The use of the CM should solve the
two problems related to exponential growth and computational
complexity since it will be calculated each time from zero only
for the new classes that are present, thus having a fixed size
at each task t.

In this second configuration, the training data Dt
trn and

CM At for task t, are fed to the P-GCN classifier. At each
new task t the CM will be computed again in order to model
the dependence of the new trend classes. Once the training is
completed, the weights and biases of the model will be saved
for reuse at the next task.

IV. EXPERIMENTAL SETUP

A. Dataset

Originally, the HARRISON dataset [7] consists of 57,383
images. Each image has an average of 4.5 associated hashtags
(minimum 1 and maximum 10 associated hashtags). The
ground truth hashtags for the images are made up of the 1,000
most frequently used hashtags.

However, in order to simulate the concept described at
the beginning of Chapter III, we have randomly divided the
dataset into 9 distinct subsets, one for each iteration during
which the model will be trained. With each new subset,
we have computed the top 50 most used hashtags, based
on the frequency of occurrence within that subset, in order
to mimic the concept of trending topics. Therefore, we are
observing which hashtags are most popular within each subset
we examine. With this new configuration the first iteration will
use the subset consisting of 10,000 images. Each subsequent
iteration will use subsets composed of approximately 5,900
images. Each image has an average of 4.2 associated hashtags
(minimum 1 and maximum 8 associated hashtags).

The transformations used to augment the datasets, and to
train the classifier are the following:

1) Geometric transformations: random affine, and random
perspective.

21

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

2) Color transformations: sharpness adjustment, posteriza-

tion, and color jitter.
The original image is transformed using a combination of
one random geometric transformation and one random color
transformation.

The training, validation and test sets for the classification
problem are built from the individual classes with stratified
sampling following this ratio: training set 70%, validation set
10%, test set 20%.

B. Comparative Analysis

Two types of comparisons were conducted. In the first
comparison, the goal is to determine whether using the ACM
yields better performance than using the CM. The second com-
parison assesses the performance of the model in two practical
scenarios. The first scenario involves excluding all images used
from previous training sessions in all subsequent sessions.
Instead, the second scenario uses all available images.

a) Choice of correlation matrix: ACM vs CM: The
purpose of this test was to determine whether it is worthwhile
to use the ACM, since as the number of classes grows, both
computational complexity and memory requirements increase
exponentially. Therefore, if the results are equivalent or show
only a slight improvement, the basic CM is preferred. Having
chosen between the two matrices, we want to observe how
the model performs as the number of iterations increases.
Therefore, we wanted to see if there are any differences in
the results between the first and the last iteration.

b) Real-world scenarios: NOD vs YOD: The purpose
of this test was to simulate two real-world scenarios. In the
first scenario, called No Old Data (NOD), it is assumed that
the photos from iteration t − 1 are no longer available at
iteration t. This may be due to the fact that certain photos
have been deleted for security, and privacy reasons, or events
that have altered people’s sensitivity to those images. In the
second scenario, called Yes Old Data (YOD), it is assumed
that at each iteration t, the images from iteration t−1 are also
used in the model training. Unlike the previous test where the
two matrices could be considered in competition to select the
better model, the objective here is to observe how the model
performs in the two aforementioned cases and whether it can
be considered a flexible model. In the case of NOD, at iteration
t = 1, there will be a batch of 10000 images available, and at
each iteration t, 5900 new images will be available and only
the new ones will be used. Similarly, in the case of YOD, at
iteration t =, there will be an initial batch of 10000 images,
but in this case, an additional 5900 images will be added at
each iteration t.

C. Training configuration

The training pipeline consists of two main steps: the visual
feature extractor, and the multi-label classifier. During the
visual extraction step, two types of visual features are extracted
from the input image. Next, the extracted features are used as
the inputs for the Prediction Learning GCN, and the score of
each class of hashtag is obtained. The scores are sorted, and the

top-ranked hashtags are recommended for the input images.
During the visual feature extraction phase, it is necessary
to have high-level feature representation and diverse visual
information to allow the model to recognize objects in a
broader range of environments.

Our feature extractor, the Res-Net101 [4], was firstly trained
on the 1.2 million images of the ImageNet dataset [5]. The
visual features extracted from the final bottleneck layer of
the previously mentioned model have 2048 dimensions, called
ResNet-Object.

Subsequently, the feature extractor was trained on 2,5 mil-
lion images of the Places-365 dataset [6]. The visual features
extracted from the final bottleneck layer of the previously
mentioned model have 2048 dimensions, called ResNet-Scene.

Lastly, inspired by [7] we decided to combine both the
object-based and the scene-based visual features. The con-
catenation of the previous two visual features (N = 2048 ×
2) is used as the input of the P-GCN. The visual extractor
step took 21 minutes and 36 seconds to complete. The P-
GCN step was trained for 100 iterations with 256 samples per
batch using the MultiLabelSoftMarginLoss as Loss function.
The learning rate was initially set to 10−3, and then decreased
by a factor of 10 every 30 iterations. Both steps, the visual
extractor and the classifier, were trained using the open-source
PyTorch framework on a single NVIDIA GeForce RTX 2070
Super and the training time was 47 minutes and 19 seconds
in total.

D. Evaluation Measures
The parameters widely employed for assessing the per-

formance of hashtag recommendation systems are hit rate,
precision, recall, and F1-score. Hence, in this paper, we will
use these evaluation metrics.

The Hit Rate@K is defined as 1 if at least one match
between the top K-ranked hashtags and the ground truth
hashtags exists:

Hit Rate@K =

{
1, if Result(K) ∩GT ̸= 0
0, if Result(K) ∩GT = 0

(4)

Precision@K is defined as the portion of hashtags in the top
K-ranked hashtags that match with the ground truth hashtags.

Recall@K is defined as the portion of hashtags in the ground
truth hashtags that match with the top K-ranked hashtags.

F1-score@K is defined as the harmonic mean of Preci-
sion@K and Recall@K.

In our experiments, we set K to 1 for precision and 5
for recall and hit rate, considering the average number of
associated hashtags per image in the HARRISON dataset is
4.5.

Since in the incremental learning phase, the same model
will be trained for 9 iterations, it is necessary to add two
additional metrics for model evaluation: the mean and the
standard deviation.

The Mean@K is calculated by adding up all the values @K
and then dividing that sum by the total number of values in
that set.

22

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

The Standard Deviation@K is calculated as the square root

of the variance, which is the average of the squared differences
between each data point and the mean.

The Mean@K and the Standard Deviation@K will be
calculated for each previously described metric: Hit Rate@K,
Precision@K, Recall@K and F1-score@K.

V. EXPERIMENTAL RESULTS

A. ACM vs CM
Firstly, we evaluated the matrices’ result on Mean Hit

Rate@5, Mean Precision@1, Mean Recall@5, and Mean F1-
score@5 by averaging over all images in the test set and across
all nine iterations. We also have the standard deviation for each
metric in order to understand the dispersion of the data. Tables
I, II, and Fig. 2 show the evaluation results for both matrices
on the HARRISON dataset. As shown in Table I, there is no
substantial difference between the use of the two matrices,
with the ACM obtaining only 2.5% more in terms of Hit rate,
1.5% more in terms of Recall, just 0.3% and 0.6% in terms
of Precision and F1-score respectively. It is also important to
note that, in the case of the ACM, the values exhibit a higher
standard deviation and, therefore, greater variability. The base
Correlation Matrix can be considered the best choice in terms
of computational complexity and accuracy ratio.

TABLE I
MEAN RESULTS USING CM AND ACM ACROSS THE ITERATION.

Matrix M Hit Rate@5 M Recall@5 M Precision@1 M F1-score@5
CM 0.495 0.306 0.144 0.122

ACM 0.520 0.321 0.147 0.128

TABLE II
STANDARD DEVIATION RESULTS USING CM AND ACM ACROSS THE

ITERATION.

Matrix SD Hit Rate@5 SD Recall@5 SD Precision@1 SD F1-score@5
CM 0.041 0.070 0.049 0.066

ACM 0.043 0.073 0.050 0.070

Fig. 2. Evaluation results using CM and ACM across the iteration as K
increases.

Once we have identified the best matrix to use, we will
focus on analyzing how our model’s results vary based on the

Fig. 3. Evaluation results for the first and last iteration with Hit Rate@K,
Recall@K, Precision@K, and F1-score@K as K varies.

number of iterations. Therefore we will compare the results
of training at iteration t = 1 with those of the last iteration,
which is t = 9.

We evaluated the two iteration results on Hit Rate@5, Pre-
cision@1, Recall@5, and F1-score@5 by averaging over all
images in the test set. Table III and Fig 3 show the evaluation
results for the first and last iteration on the HARRISON
dataset. As shown in Table III, the last iteration achieved better
performance across all metrics, with an average Hit Rate@K
of 54.2% compared to 43% of the first iteration. Also, in terms
of Recall@K the last iteration obtained 16.3% more than the
first iteration, 13.2% and 6% more in terms of Precision@K
and F1-score@K respectively.

TABLE III
EVALUATION RESULTS FOR THE FIRST AND LAST ITERATION WITH HIT

RATE@K, RECALL@K, PRECISION@K, AND F1-SCORE@K.

Iteration Hit Rate@5 Recall@5 Precision@1 F1-score@5
First 0.430 0.211 0.083 0.146
Last 0.542 0.374 0.215 0.208

B. NOD vs YOD
As a final test, we want to verify how the model performs

in case the data from iteration t−1 is available. We evaluated
the YOD and NOD results on Mean Hit rate@5, Mean
Precision@1, Mean Recall@5, and Mean F1-score@5 by
averaging over all images in the test set and across all nine
iterations. We also have the standard deviation for each metric
to understand the variability of the data. Tables IV, V and
Fig. 4 show the evaluation results for both approaches on
the HARRISON dataset. As we can see in Table IV, there is
no substantial difference in terms of results, both approaches
can be considered effective in assigning hashtags. The only
difference can be found in the sparsity of the result, as can we
see in Table V, YOD results across iterations tend to be more
stable having a lower standard deviation.

VI. CONCLUSION

We addressed the task of hashtag assigment by leveraging
Graph Convolutional Networks with class-incremental learn-

23

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

TABLE IV

MEAN RESULTS USING NOD AND YOD APPROACHES ACROSS THE
ITERATIONS.

Matrix M Hit Rate@5 M Recall@5 M Precision@1 M F1-score@5
NOD 0.495 0.306 0.144 0.122
YOD 0.475 0.294 0.140 0.117

TABLE V
STANDARD DEVIATION RESULTS USING NOD AND YOD APPROACHES

ACROSS THE ITERATIONS.

Matrix SD Hit Rate@5 SD Recall@5 SD Precision@1 SD F1-score@5
NOD 0.041 0.070 0.049 0.066
YOD 0.021 0.036 0.024 0.036

ing, motivated by the observation that new hashtags are being
constantly generated, thus requiring a flexible solution.

During the training phase, several experiments were con-
ducted. The first experiment involved comparing the base cor-
relation matrix to the augmented correlation matrix. The latter
yielded slightly higher values compared to the former, but due
to its computational complexity and exponential growth as the
number of classes increased, the base correlation matrix was
preferred. The second experiment compared using all available
images at each iteration, known as Yes Old Data (YOD), to
using only the images from the current iteration, known as
No Old Data (NOD). Based on the conducted tests, the model
performed well in both cases, producing similar results in both
experiments. The only difference observed was that the model
trained with YOD exhibited less variability in results between
iterations. In any case, the model can be considered effective
in both real-life scenarios.

One of the possible future developments will be to test how
different configurations of dataset partitions can influence the
results compared to the one used in this specific set of temporal
experiments.

Acknowledgments

This work was partially supported by the MUR under
the grant “Dipartimenti di Eccellenza 2023-2027” of the
Department of Informatics, Systems and Communication of
the University of Milano-Bicocca, Italy.

REFERENCES

[1] CHEN, Zhao-Min, et al. Learning graph convolutional networks for
multi-label recognition and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021, 45.6: 6969-6983.

[2] CHEN, Zhao-Min, et al. Multi-label image recognition with graph
convolutional networks. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2019. p. 5177-5186.

[3] DU, Kaile, et al. Class-incremental lifelong learning in multi-label
classification. arXiv preprint arXiv:2207.07840, 2022.

[4] HE, Kaiming, et al. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016. p. 770-778.

[5] RUSSAKOVSKY, Olga, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 2015, 115: 211-252.

[6] ZHOU, Bolei, et al. Places: A 10 million image database for scene recog-
nition. IEEE transactions on pattern analysis and machine intelligence,
2017, 40.6: 1452-1464.

Fig. 4. Evaluation results using NOD and YOD approaches across the iteration
as K increases.

[7] PARK, Minseok; LI, Hanxiang; KIM, Junmo. HARRISON: A bench-
mark on hashtag recommendation for real-world images in social
networks. arXiv preprint arXiv:1605.05054, 2016.

[8] ZHANG, Suwei, et al. Hashtag recommendation for photo sharing ser-
vices. In: Proceedings of the AAAI conference on artificial intelligence.
2019. p. 5805-5812.

[9] KIPF, Thomas N.; WELLING, Max. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[10] YAN, Shipeng; XIE, Jiangwei; HE, Xuming. Der: Dynamically expand-
able representation for class incremental learning. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2021. p. 3014-3023.

[11] SERRA, Joan, et al. Overcoming catastrophic forgetting with hard
attention to the task. In: International conference on machine learning.
PMLR, 2018. p. 4548-4557.

[12] ZHANG, Chi, et al. Few-shot incremental learning with continually
evolved classifiers. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021. p. 12455-12464.

[13] MCCLOSKEY, Michael; COHEN, Neal J. Catastrophic interference in
connectionist networks: The sequential learning problem. In: Psychology
of learning and motivation. Academic Press, 1989. p. 109-165.

[14] LIU, Yaoyao; SCHIELE, Bernt; SUN, Qianru. Adaptive aggregation net-
works for class-incremental learning. In: Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition. 2021. p. 2544-
2553.

[15] DE LANGE, Matthias, et al. A continual learning survey: Defying
forgetting in classification tasks. IEEE transactions on pattern analysis
and machine intelligence, 2021, 44.7: 3366-3385.

[16] TRAN, Van Cuong; HWANG, Dosam; NGUYEN, Ngoc Thanh. Hashtag
recommendation approach based on content and user characteristics.
Cybernetics and Systems, 2018, 49.5-6: 368-383.

[17] ZHANG, Qi, et al. Hashtag Recommendation for Multimodal Microblog
Using Co-Attention Network. In: IJCAI. 2017. p. 3420-3426.

[18] SIGURBJÖRNSSON, Börkur; VAN ZWOL, Roelof. Flickr tag recom-
mendation based on collective knowledge. In: Proceedings of the 17th
international conference on World Wide Web. 2008. p. 327-336.

[19] DING, Zhuoye, et al. Learning topical translation model for microblog
hashtag suggestion. In: Twenty-third international joint conference on
artificial intelligence. 2013.

[20] ZANGERLE, Eva; GASSLER, Wolfgang; SPECHT, Günther. On the
impact of text similarity functions on hashtag recommendations in
microblogging environments. Social network analysis and mining, 2013,
3: 889-898.

[21] GODIN, Fréderic, et al. Using topic models for twitter hashtag rec-
ommendation. In: Proceedings of the 22nd international conference on
world wide web. 2013. p. 593-596.

[22] LI, Yang, et al. Hashtag recommendation with topical attention-based
LSTM. In: Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Papers. 2016. p. 3019-
3029.

24

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on December 05,2024 at 16:57:26 UTC from IEEE Xplore. Restrictions apply.

