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A B S T R A C T

Computational color constancy is an under-determined problem. As such, a key objective is to assign a level
of uncertainty to the output illuminant estimations, which can significantly impact the reliability of the
corrected images for downstream computer vision tasks. In this paper we present a formalization of uncertainty
estimation in color constancy, and we define three forms of uncertainty that require at most one inference run
to be estimated. The defined uncertainty estimators are applied to five different categories of color constancy
algorithms. The experimental results on two standard datasets show a strong correlation between the estimated
uncertainty and the illuminant estimation error. Furthermore, we show how color constancy algorithms can
be cascaded leveraging the estimated uncertainty to provide more accurate illuminant estimates.
Computational color constancy refers to the problem of correcting
the color cast of an image such that it appears as if it was acquired
under a neutral or standard light source, called illuminant. A key
challenge is the estimation of the existing illuminant from the image
data alone, which is an under-determined problem [1] to the extent
that human color constancy is known to fail too [2,3]. Therefore, by
definition, all algorithms for computational color constancy operate in
conditions of uncertainty, and must rely on additional assumptions on
the input. Low level, statistics-based, algorithms make explicit assump-
tions about the statistical properties of natural scenes, and estimate the
color of the illuminant as the deviation from such assumptions [4].
Most recent and effective algorithms are learning-based, and exploit
models trained on handcrafted features extracted from the input image
(e.g., [5–7]) or deep learning models (e.g., [8–10]). These methods
operate more abstract levels of reasoning [11], and are expected to rely
on assumptions based on the distribution of the training data [12,13].

The intrinsic ill-posed nature of the problem directly implies that
information to answer the question ‘‘what is the illuminant?’’ is funda-
mentally missing, and we intend to convert this lack of information into
a piece of information itself, answering the question ‘‘how uncertain
is the illuminant?’’. It also implies that, by definition, all algorithms
for computational color constancy operate in conditions of uncertainty,
to which their effectiveness is rooted: Morovič et al. [14] argue in
fact that there exist uncertainty and variation in a variety of color-
related problems: in color representation, in quantities from which
colorimetry is computed, and in perceptual evaluation, to the point
that the representation of color information should always go beyond
a single punctual piece of information. It appears therefore funda-
mental to associate a level of uncertainty to illuminant estimations,
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as a way to guide the interpretation of the results, and to aid the
algorithms’ explainability: Explainable Artificial Intelligence (XAI) [15]
is concerned with providing the tools for human understanding of
a model’s response: identifying the different sources for uncertainty
allows therefore to realize whether a certain output is grounded on
previous knowledge, or how sensitive it is to inconspicuous fluctuations
in the input representation. This, in turn, is desired as a way to provide
human-interpretable feedback for the model’s improvement. Estimating
the uncertainty of a predicted illuminant can also have a direct impact
on downstream computer vision tasks. Zini et al. [16] demonstrate that
incorrect color constancy can significantly reduce recognition accuracy,
highlighting the connection between these tasks. Therefore, we can en-
vision a scenario where, if the estimated uncertainty for the illuminant
is high, image recognition is performed on a grayscale version of the
image to minimize the impact of unreliable color information, or under
multiple color perturbations to achieve a consensus-based recognition.

In the field of uncertainty estimation, Der Kiureghian and
Ditlevsen [17] initially formalized the concepts of aleatoric and epis-
temic uncertainty for engineering modeling: aleatoric uncertainty is
an umbrella term that refers to the impact of uncontrollable random
phenomena in a model’s functioning, whereas epistemic uncertainty is
explicitly tied to lack of sufficient knowledge and as such it is assumed
to be potentially controlled with additional data. Kendal and Gal [18]
further distinguished between homoscedastic aleatoric uncertainty,
which describes the model’s inherent noise as source of uncertainty,
and heteroscedastic aleatoric uncertainty, which is dependent on the
individual input. Many computer vision problems are nowadays often
https://doi.org/10.1016/j.patcog.2024.111175
Received 24 November 2023; Received in revised form 10 October 2024; Accepted
vailable online 15 November 2024 
031-3203/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
 6 November 2024

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
mailto:marco.buzzelli@unimib.it
mailto:simone.bianco@unimib.it
https://doi.org/10.1016/j.patcog.2024.111175
https://doi.org/10.1016/j.patcog.2024.111175
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2024.111175&domain=pdf


M. Buzzelli and S. Bianco Pattern Recognition 160 (2025) 111175 
addressed with the aid of deep learning models based on convolutional
neural networks, due to their demonstrated effectiveness [19,20],
although with the drawbacks of limited interpretability with respect to
the usage of handcrafted techniques, and lack of calibrated probabilistic
predictions [21]. A common solution [18] to the latter problem is
the adoption of Bayesian Neural Networks (BNN), which replace a
deterministic network’s weight parameters with distributions over the
parameters themselves. Hernandez-Lobato and Adams [21], however,
note that BNNs are in practice incompatible with large datasets and
network sizes, and propose a probabilistic backpropagation procedure
to mitigate this problem. The results are found to be competitive,
but not on par, with traditional backpropagation. Another limitation
of BNNs is identified by Gal and Ghahramani [22] in the result-
ing constraints to computational complexity and test accuracy. They
therefore proposed to exploit dropout layers as an approximation for
Bayesian inference. This approach is shown to be effective, but it is
limited to neural architectures that are designed and trained with such
layers. Alternatively, several sources [23,24] propose the usage of deep
ensembles to model uncertainty in inference, possibly in combination
with dropout. In general, deep ensemble solutions represent a state of
the art alternative to BNNs as noted by Ovadia et al. [25], but require
a number of inference runs to produce reliable uncertainty estimations,
thus creating efficiency issues for real-time deployment.

In this work, we address the problem of uncertainty estimation in
computational color constancy, providing a set of solutions that gener-
alize to different models (including, but not limited to, deep learning),
and that require a limited amount of inference runs. Specifically, we
present a formalization of uncertainty estimation in color constancy
and we define three different forms of uncertainty, as depicted in Fig. 1.
The first one (aleatoric) models uncertainty as the deviation of the
illuminant estimate that is caused by a variation of the image content,
reflecting the inherent noise during the image capture process; the
second one (epistemic) models the uncertainty associated to the bias
in the training data, with the most common illuminants being the less
uncertain, helping to measure confidence in illuminant estimates from
unseen scenarios; the third one (intrinsic) learns to model uncertainty
from the image itself exploiting image properties that suggest lack of
information, e.g. the close-up of a surface where it is impossible to
disentangle the illuminant and the reflectance.

It is possible to envision an application of the estimated uncertainty
to the performance of color constancy: to this extent, we conduct
in Section 3.3 two preliminary experiments. In the first experiment
we aim at improving the computational performance, resorting to
computation-heavy color constancy algorithms only when the uncer-
tainty of lightweight ones exceeds a given threshold. In the second
experiment, we aim at improving the estimation performance. To this
extent, we estimate the illuminant using a primary color constancy al-
gorithm: if its estimated uncertainty is above a predefined threshold, we
query a secondary color constancy algorithm, and replace its estimation
if we measure a decrease in uncertainty.

There has been little to no published research in uncertainty es-
timation specifically for the task of computational color constancy.
One example is the work by Zakizadeh et al. [26], where challenging
images are identified as potentially more uncertain and as such should
be processed in a different way. This approach can be in hindsight
reinterpreted as an example of extremely specialized binary uncertainty
estimation, nonetheless providing a practical use case application for
it. A second example is the work by Hu et al. [10], which introduces
the concept of a confidence-weighted pooling layer to weight the acti-
vations of the last neural feature map to produce the final illuminant
estimate. Although this representation might contain information about
the uncertainty of the overall estimation, no procedure is described
to quantify this value. Similarly Bianco and Cusano [27] estimate the
illuminant as a weighted sum of the input pixels, where the weights are
the output of the network. Also in this case no procedure is described
to associate an uncertainty value on the basis of the weight map.
2 
Fig. 1. Overview of the proposed methods for uncertainty estimation in color con-
stancy. Aleatoric uncertainty measures the impact of input perturbations. Epistemic
uncertainty quantifies the distance from a training set. Intrinsic uncertainty directly
predicts an uncertainty radius.

Finally, Barron [28] casts the illuminant estimation problem as a 2-
dimensional spatial localization task in a log-chrominance space, and
assigns a likelihood score for all bins in the chroma histogram assuming
that the highest-scoring bin is the color of the illuminant. Also in this
case, the potential information contained in the score distribution is not
exploited.

The main contributions of this work can be summarized as follows:

- we formalize the concept of uncertainty in color constancy, and
define three forms of uncertainty that require at most one infer-
ence run in the trained model to be estimated;

- we show the applicability of our uncertainty estimators to differ-
ent categories of color constancy methods, ranging from statistics-
based approaches to deep CNN-based ones, and quantify their
validity;

- we demonstrate an application of the usability of the estimated
uncertainty to improve color constancy performance with a cas-
cade approach.

1. Formalization and proposal

In this section we provide a formalization of uncertainty estimation
in the context of computational color constancy, adapting the concepts
of aleatoric and epistemic uncertainty to rely on a single inference run,
and defining the concept of intrinsic uncertainty, which we present in
the single shot and dual shot variants.

Let 𝑥 be an input color image with size 𝑁 ×𝑀 × 3 taking values in
R𝑁×𝑀×3. Let 𝑓𝐼 𝐸 (𝑥; 𝜃) be an illuminant estimator 𝑓𝐼 𝐸 ∶ R𝑁×𝑀×3 → R3,
characterized by parameters 𝜃. Let 𝑔∗(⋅) be an uncertainty estimator that
will be instantiated later with its input(s), domain, and co-domain. Let
𝑦 be the ground truth illuminant associated to the image 𝑥, and 𝑦̂ the
illuminant estimated by 𝑓𝐼 𝐸 for the image 𝑥, i.e. 𝑦̂ = 𝑓𝐼 𝐸 (𝑥; 𝜃). Let 𝑒
be the recovery angular error between ground truth illuminant 𝑦 and
estimated illuminant 𝑦̂, i.e. 𝑒 = 𝑒𝑟𝑟(𝑦, 𝑦̂).

The recovery angular error 𝑒𝑟𝑟 [29] quantifies the angular distance
between two illuminants 𝑈 ∈ R3 and 𝑉 ∈ R3:

𝑒𝑟𝑟(𝑈 , 𝑉 ) = acos
(
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By definition, the angular error computation normalizes the input
illuminants.
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The accuracy of estimated uncertainty (UA) is here evaluated in
terms of its correlation (𝑐 𝑜𝑟𝑟) with the eventual recovery angular error
for illuminant estimation, considering both Pearson and Spearman
coefficients:

𝑈 𝐴 = 𝑐 𝑜𝑟𝑟 (𝑔∗(⋅), 𝑒𝑟𝑟(𝑦, 𝑦̂)
)

. (2)

The rationale is that, if an illuminant estimation is found to be
particularly wrong (high error), it is desirable that it is associated to
a high level of uncertainty. Additional metrics for the evaluation of
uncertainty estimation will be defined in the experimental section.

1.1. Aleatoric uncertainty

Aleatoric uncertainty is here defined as the change in illuminant
stimation resulting from a perturbation 𝛿 of the input, introduced by
n operator ⊕:

𝑔𝐴
(

𝑓𝐼 𝐸 (𝑥; 𝜃) , 𝑓𝐼 𝐸 (𝑥 ⊕ 𝛿; 𝜃)) ∶ R3 ⋅ R3 → R. (3)

The rationale is as follows: given a fixed perturbation of the input, a
proportionally small change in the output suggests high confidence in
the initial response, whereas a large change in the output suggests high
uncertainty.

In our setup, we specifically consider illuminant perturbations,
where ⊕ represents the introduction of an artificial illuminant 𝛿 =
{𝛿𝑅, 𝛿𝐺 , 𝛿𝐵} to the input image. This is obtained by multiplying the
green-normalized RGB illuminant through a von Kries-like [30] diago-
al transform to each pixel 𝑖 of test image 𝑥:

𝑥(𝑖)⊕ 𝛿 =
[

𝑥𝑅(𝑖) 𝑥𝐺(𝑖) 𝑥𝐵(𝑖)
]

𝑑 𝑖𝑎𝑔
(

𝛿𝑅
𝛿𝐺

, 1,
𝛿𝐵
𝛿𝐺

)

=
[

𝛿𝑅
𝛿𝐺

𝑥𝑅(𝑖) 𝑥𝐺(𝑖)
𝛿𝐵
𝛿𝐺

𝑥𝐵(𝑖)
]

, (4)

i.e., each color channel is independently scaled with a factor that
epends on the color of the illuminant.

The function 𝑔𝐴 used to measure the change in estimation is the
recovery angular error, thus:

𝑔𝐴 ∶= 𝑒𝑟𝑟
(

𝑓𝐼 𝐸 (𝑥; 𝜃) , 𝑓𝐼 𝐸 (𝑥 ⊕ 𝛿; 𝜃)) . (5)

Let 𝛥 be a list of possible illuminant perturbations 𝛿: our goal is to
ind the perturbation which is the best predictor for uncertainty. We ap-
ly each perturbation 𝛿 ∈ 𝛥 to every test set image 𝑥 following Eq. (4).

Then, for a given illuminant estimation method 𝑓𝐼 𝐸 , we compute the set
f illuminant estimation changes between 𝑓𝐼 𝐸 (𝑥; 𝜃) and 𝑓𝐼 𝐸 (𝑥 ⊕ 𝛿; 𝜃)
𝛿 ∈ 𝛥, and optimize the best perturbation 𝛿0:

𝛿0 = argmax𝛿∈𝛥
(

UA
(

𝑒, 𝑒𝑟𝑟 (𝑓𝐼 𝐸 (𝑥; 𝜃), 𝑓𝐼 𝐸 (𝑥 ⊕ 𝛿; 𝜃)))) . (6)

The discrete set of perturbations 𝛥 considered for our experiments
is presented in Section 2.1, and explored with grid-search via cross-
validation.

1.2. Epistemic uncertainty

We define epistemic uncertainty as the degree to which the input
mage is dissimilar to a given knowledge base 𝐾, as described by feature
xtractors ℎ and 𝐻 :

𝑔𝐸 (ℎ(𝑥), 𝐻(𝐾)) ∶ R3 ⋅ R𝑘×3 → R. (7)

The rationale is as follows: an image that is similar to what has
een observed during the training phase, suggests that the response of
he illuminant estimator is grounded in knowledge and thus it can be
ssociated to a high level of confidence. Conversely, an image that is
articularly different from the training data, suggests high uncertainty
n the produced illuminant estimation.
3 
For the sake of generality, feature extractor ℎ could capture different
aspects of the input image, from higher-level semantics to lower-level
descriptors. In our setup, in practice, we use illuminant estimation itself
as a feature extractor, therefore directly comparing images in terms
of their illuminants. Accordingly, as knowledge base 𝐾 we consider
the illuminant estimation training set having cardinality |𝐾| = 𝑘, for
which ground truth illuminants (as opposed to estimated) are available,
taking the role of 𝐻(𝐾) in Eq. (7). We thus compare the illuminant
estimation on the test image 𝑥, against all ground truth illuminants
n the training set, to compute a distance vector 𝐷. For distance
valuation, we select the 𝑝th percentile (𝑝𝑡𝑖𝑙 𝑒𝑝) [31] of the resulting
istribution, as a generalization of the minimum distance:

𝑔𝐸 ∶= 𝑝𝑡𝑖𝑙 𝑒𝑝 (𝑒𝑟𝑟 (ℎ(𝑥), 𝐻(𝐾))) , (8)

Let 𝑃 be a list of possible percentiles. We select the 𝑝th percentile
of distance vector 𝐷 as predictor for uncertainty. Determining the best
percentile order 𝑝0 is formalized as:

𝑝0 = argmax𝑝∈𝑃
(

UA
(

𝑒, 𝑝𝑡𝑖𝑙 𝑒𝑝 (𝐷)
))

. (9)

The discrete set of explored percentiles 𝑃 considered for our exper-
ments is presented in Section 2.1, and explored with grid-search via

cross-validation.

1.3. Intrinsic uncertainty

Intrinsic uncertainty is here defined as a property that can be
estimated by direct analysis of the input image, assigning a degree of
ncertainty to the illuminant estimated on the same image:

𝑔𝐼 (𝑥; 𝜃𝐼 ). (10)

This extraction relies on a machine learning model, trained with the
bjective of predicting the illuminant estimation error associated to an

image, in line with Eq. (2):

𝑔𝐼 (𝑥; 𝜃𝐼 ) = 𝑒 ≈ 𝑒. (11)

In the following, two variants of uncertainty extraction are intro-
uced, called respectively single shot and dual shot.

1.3.1. Single shot intrinsic uncertainty
In the single shot (SS) intrinsic uncertainty estimation, the orig-

inal model for illuminant estimation is repurposed as a multi-task
model 𝑓𝑆 𝑆

𝐼 𝐸 for simultaneously estimating the scene illuminant and its
uncertainty in a single shot:

𝑔𝐼 ∶= 𝑓𝑆 𝑆
𝐼 𝐸 ∶ R𝑁×𝑀×3 → R4 =

{

R3,R
}

, (12)

so that 𝑓𝑆 𝑆
𝐼 𝐸 (𝑥; 𝜃𝐼 ) = {𝑦̂, ̂𝑒}. Multi-task learning has been shown to

improve the generalization of the model by obtaining knowledge in
related tasks that can serve as a further regularization [32]. In partic-
lar, we argue that uncertainty estimation and illuminant estimation

are related tasks, and the first one can greatly benefit of the knowledge
ained from the second one. As a multi-task learning problem, its
raining requires a total loss composed by three different terms. The
irst term 𝐼 𝐸 is related to illuminant estimation:

𝐼 𝐸 = 𝑒𝑟𝑟 (𝑦, 𝑦̂) (13)

and measures for each image in the batch the recovery angular error de-
fined in Eq. (1) between the ground truth and the estimated illuminant.

he second term is related to uncertainty estimation:

𝑈 𝐸-𝐿1 = 𝑑1 (𝑒, ̂𝑒) (14)

and measures for each image in the batch the 𝐿1 distance between the
illuminant estimation error and the predicted one. The third term is
also related to uncertainty estimation:

𝑈 𝐸-𝐶 = −|𝑃 𝐶 𝐶 (𝑒, 𝑒) | (15)
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and measures for each batch the absolute value of the Pearson correla-
ion coefficient between the illuminant estimation errors and the pre-

dicted ones, following the provided definition of uncertainty accuracy
(UA). The total loss 𝑇 𝑂 𝑇 can then be written as:

𝑇 𝑂 𝑇 = 𝜆𝐼 𝐸 ⋅ 𝐼 𝐸 + 𝜆𝑈 𝐸-𝐿1 ⋅ 𝑈 𝐸-𝐿1 + 𝜆𝑈 𝐸-𝐶 ⋅ 𝑈 𝐸-𝐶 , (16)

where 𝜆𝐼 𝐸 , 𝜆𝑈 𝐸-𝐿1, and 𝜆𝑈 𝐸-𝐶 are three scalars regulating the relative
contributions of the respective terms in the loss.

1.3.2. Dual shot intrinsic uncertainty
In the dual shot (DS) uncertainty estimation, the model 𝑔𝐼 is trained

to predict the illuminant estimation error 𝑒 = 𝑒𝑟𝑟(𝑦, 𝑦̂) resulting from
he estimation 𝑦̂ = 𝑓𝐼 𝐸 (𝑥; 𝜃). The model 𝑔𝐼 is the original model for
lluminant estimation, repurposed for uncertainty estimation:

𝑔𝐼 ∶= 𝑓𝐷 𝑆
𝐼 𝐸 ∶ R𝑁×𝑀×3 → R, (17)

so that 𝑓𝐷 𝑆
𝐼 𝐸 (𝑥; 𝜃2) = 𝑒.

After we have trained the illuminant estimator 𝑓𝐼 𝐸 (𝑥; 𝜃), that for
each image 𝑥𝑖 in the dataset  produces an estimate 𝑦̂𝑖 = 𝑓𝐼 𝐸 (𝑥𝑖; 𝜃),

e train a second version of the estimator that is now repurposed for
ncertainty estimation so that 𝑓𝐷 𝑆

𝐼 𝐸 (𝑥𝑖; 𝜃2) = 𝑒𝑖 = 𝑒𝑟𝑟(𝑦, 𝑦̂𝑖). This dual
hot estimator is trained using the total loss:

𝑇 𝑂 𝑇 = 𝜆𝑈 𝐸-𝐿1 ⋅ 𝑈 𝐸-𝐿1 + 𝜆𝑈 𝐸-𝐶 ⋅ 𝑈 𝐸-𝐶 , (18)

where 𝑈 𝐸-𝐿1 and 𝑈 𝐸-𝐶 are respectively defined in Eqs. (14) and
(15). DS uncertainty estimation has the advantage over SS in not
having to find a trade-off between illuminant and uncertainty estima-
tion accuracy, since there are two sets of weights trained for the two
estimation tasks. It also serves to prove if uncertainty estimation and
illuminant estimation are related tasks, and to measure the performance
improvement in the first task due to the knowledge coming from the
second one.

1.4. Methods categorization

The proposed methods to estimate uncertainty in the domain of
olor constancy are characterized by significantly different approaches,
hich lead to different types of dependence from training bias and
omain shift. Aleatoric uncertainty operates directly and solely on the
nput image, without the need for a training set. As such, it is not
ubject to influences related to domain shift. Epistemic uncertainty
s explicitly designed to leverage the bias of a training dataset. As
 consequence, any effect of domain shift is intrinsically tied to the
ethod itself. Intrinsic uncertainty is potentially subject to suffering

rom an over dependence on training conditions. Therefore, it is more
ensitive to domain shift effects.

2. Experimental setup

Datasets We use two real-world color constancy datasets to evalu-
ate the performance of the different uncertainty estimation methods:

• The Gehler–Shi dataset [33] (also known as the ColorChecker
dataset) with REC groundtruth [34] depicts a number of indoor
and outdoor scenarios, and includes several human subjects in the
shots.

• The Cube++ datasetdataset [35] includes ten-fold the number of
images of Gehler–Shi, and also depicts a variety of scenes from
indoor and outdoor setups.

For both datasets we masked all the color checker targets by setting
the pixel values to (0, 0, 0) in RGB space.

Illuminant estimation methods Illuminant estimation algorithms
n the literature can be grouped in different categories, on the basis of
heir assumptions and the techniques used for estimation. As stated in
he previous sections, aleatoric uncertainty and epistemic uncertainty
4 
can be applied to any illuminant estimation algorithm without any
odification. Intrinsic uncertainty estimation instead requires that the

lluminant estimation algorithm is based on machine learning. In or-
er to test and compare the different uncertainty estimation methods
roposed in this paper, we select one illuminant estimation method for
ach of the most commonly used machine learning-based categories:

- Tree-based: [7]
- Deep CNN-based: FC4 (SqueezeNet) [10]
- Shallow CNN-based: Convolutional Mean [36]
- Statistics-based: Corrected Moments [37]
- Combination-based (linear) : LMS committee [38]

The method by [7] is trained on full size images using the original
implementation from the authors.

FC4 [10] is trained on 512 × 512 images, using Adam as optimizer
ith a learning rate of 3e−4, a weight decay equal to 5e−5, for a total
f 1000 epochs, with a batch size of 16. During training the images are
ugmented with a random rotation in [−30◦, 30◦], with random crops
aving a scale factor in the range [0.1, 1.00] and an aspect ratio in the
ange [0.9, 1.1], and random horizontal flip with 0.5 probability. The
naugmented training set is used as validation data to select the best
odel. FC4+SS is trained using the same hyperparameters of FC4 with

he difference that, after 1000 epochs of training the whole model, 500
dditional epochs are spent to fine-tune only the final layer, mapping
o the estimated uncertainty. FC4+DS is trained in the exact same
onfiguration of FC4.

Convolutional Mean (Conv.Mean) [36] is trained with the same
procedure for FC4, but on 200 × 200 input images using a 5e−3 learning
rate. Conv.Mean+SS and Conv.Mean+DS are respectively trained like
C4+SS and FC4+DS.

The Corrected Moments [37] variant implemented in this paper
s the 9 Color-Edge moments, and the correction matrix is found by
ollowing the alternating least squares solution strategy proposed by

the authors.
LMS Committee [38] combines six statistics-based algorithms that

are instantiations of the Gray Edge framework [4]: Shades of Gray
(SoG), General Gray World (gGW), Gray Edge 1st order (GE1), Gray
Edge 2nd order (GE2), Gray World (GW), and White point (WP).
The parameters of each algorithm are set as in [39], and the input
images are resized with the longest side to 256. Before combining, each
individual illuminant estimate is normalized to unitary norm, and the
combination matrix is estimated using the standard pseudo-inverse.

2.1. Uncertainty implementation details

Monte Carlo dropout [22]. We implement Monte Carlo (MC)
ropout uncertainty estimation as representative for state of the art

deep ensembles. We perform 𝑇 = 100 stochastic forward passes through
the trained model, averaging the per-channel standard deviations of the
illuminant estimations. Performance at different values of 𝑇 is reported
in Appendix A.3.

Aleatoric uncertainty. We generate 629 illuminants, sampled uni-
formly in Angle-Retaining Chromaticity (ARC) [40]. Resorting to ARC
representation allows us to cover the whole chromaticity diagram
without biases towards specific regions. Each sampled ARC illumi-
nant {𝛿𝛼𝐴 , 𝛿𝛼𝑅} is then converted into a corresponding RGB illuminant
{𝛿𝑅, 𝛿𝐺 , 𝛿𝐵} before application via diagonal transform. In order to en-
sure a fair selection of the best perturbation 𝛿, cross-validation is
used for the Gehler–Shi dataset (using the three official folds) and for
the SimpleCube++ test set (using two folds). A visualization of the
landscape of possible perturbations is provided in Appendix A.1.

Epistemic uncertainty. We evaluate the Euclidean distance be-
ween the ARC-encoded estimated illuminant 𝑓𝐼 𝐸 (𝑥; 𝜃) and all ARC-
ncoded ground truth training illuminants 𝐺 𝑇 (𝐾), producing a distance
ector 𝐷:

( ( ) )
𝐷 = 𝑑 𝑖𝑠𝑡𝐸 𝑢𝑐 𝐴𝑅𝐶 𝑓𝐼 𝐸 (𝑥; 𝜃) , 𝐴𝑅𝐶 (𝐺 𝑇 (𝐾)) . (19)
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Table 1
Main characteristics of the considered uncertainty types.

Uncertainty type No. inference
runs
(IE+Uncert.)

Works on any IE
model

Needs to
retrain the IE
model

MC dropout [22] 1+T No (dropout req.) No
Aleatoric 1+1 Yes No
Epistemic 1 Yes No
Intrinsic 1 (SS), 1+1 (DS) No (SS), Yes (DS) Yes

The usage of the ARC representation allows us to efficiently compute
at inference time a distance matrix based on Euclidean distances, as a
roxy for angular distances in RGB space, which are commonly used
n the comparison of illuminants. We consider 𝑃 = [0, 50] as the list of

percentiles evaluated for best uncertainty predictor, whose behavior is
explored in Appendix A.1. Cross-validation is also used to ensure a fair
evaluation.

Single shot intrinsic uncertainty. The weights in the total loss
efined in Eq. (16) are set as follows: 𝜆𝐼 𝐸 = 1, while the weights
𝑈 𝐸-𝐿1 and 𝜆𝑈 𝐸-𝐶 are set by performing multiobjective hyperparameter

optimization on the validation set: we target performance on FC4,
electing the Pareto-optimal configuration that produces the highest
orrelation, while limiting the angular error deterioration to 10% from
he baseline model. The resulting optimized weights are 𝜆𝑈 𝐸-𝐿1 =
2.56𝑒 − 5 and 𝜆𝑈 𝐸-𝐶 = 2.55.

Dual shot intrinsic uncertainty 𝜆𝑈 𝐸-𝐿1 and 𝜆𝑈 𝐸-𝐶 are set to the
same values of the Single shot case.

The main characteristics of the uncertainty estimators considered
in this work are reported in Table 1 in terms of: inference runs needed
for illuminant and uncertainty estimation, compatibility with any il-
luminant estimation algorithm, and necessity to retrain a repurposed
version of the illuminant estimation algorithm. The compatibility con-
straint of MC dropout is using a deep learning model designed and
trained with a dropout layer. The same constraint also applies to more
recent variants, e.g. MC DropBlock [41]. The constraint of Intrinsic (SS)
s using the custom loss in Eq. (16) which, in our setup, excludes the

algorithm in [7] since it builds one model for each of the illuminant
omponents, and excludes the LMS Committee [38] since it would

require replacing the LMS solver with a nonlinear optimizer.

3. Experimental results

The experimental results are reported in Table 2 in terms of angular
error statistics (the lower the better) and correlation (the higher the
better) including both Pearson Correlation Coefficient (PCC) and Spear-
man Rank Correlation Coefficient (SRCC). All statistics are averaged
over three independent runs. Concerning the angular error we report
the mean and median values as measures of the central tendency,
the trimean which combines the median’s emphasis on center values
with the midhinge’s attention to the extremes [42], and the 95th and
9th percentiles as statistics of the worst case performance which can
ave catastrophic effects on recognition performance if the images are
sed for downstream computer vision tasks, or human judgment if the
mages are for personal collection. The correlation coefficients are used
o evaluate the quality of the estimated uncertainty instead of distance
etric, since uncertainty can be later calibrated to assume values in

he desired range. Correlations measure to which extent the estimated
ncertainty can be calibrated with a linear function (PCC) or with a
on-linear function (SRCC).

From the experimental results on the Gehler–Shi dataset [33] with
EC groundtruth [34] reported in Table 2 we can notice that the

method reaching the lowest angular error on the Mean, Median, and
Trimean statistic is FC4, while the lowest 95th and 99th percentile
errors are reached by FC4+SS, i.e. FC4 with Single shot intrinsic uncer-
tainty. Note that we report high-order percentiles as a generalization
of the less-robust maximum error.
5 
Recall that Dual shot trains the same model in two phases, gener-
ting two separate parameter sets for two different tasks: illuminant
stimation and uncertainty estimation, whereas Single shot attempts to

perform multitasking, learning a single set of features for both tasks.
The fact that SS outperforms DS suggests that the two tasks are indeed
related and benefit from shared knowledge. If DS had performed better,
it would have indicated that the two problems are less interconnected.
We can also observe how the highest correlations are obtained by
MC dropout [22], epistemic uncertainty, or by SS intrinsic uncer-
tainty. Furthermore, we can observe how in certain cases, applying
MC dropout [22] or Epistemic uncertainty on a model trained with SS
Intrinsic uncertainty is able to further improve the correlation. This can
e observed for example for Corrected Moments [37] in terms of PCC,

and Convolutional Mean [36] in terms of SRCC. These findings are also
confirmed on the Simple Cube++ dataset [35], as reported in Table 3.
Overall, epistemic uncertainty provides the best, or second best, results
er correlation type in most configurations, with an average PCC of

0.4682 and SRCC of 0.5137, suggesting that it is a solid baseline choice
for general situations. Additionally, the computation of epistemic un-
certainty over models trained for Single shot uncertainty introduces an
average improvement of 0.1787 points in PCC and 0.1274 points in
SRCC.

In general we can observe that on the Simple Cube++ dataset the
ngular error is lower and the correlations are higher with respect
o the Gehler–Shi dataset. As additional comparison, we evaluate the
ncertainty information that can be extracted from existing illuminant
stimation methods by exploiting the natively-available confidence
aps and weight maps (e.g., [10,27]). The experiment (reported in

Appendix A.5) shows a very weak correlation, leading to the conclusion
that such methods do not estimate uncertainty, even implicitly.

For each illuminant estimation method reported in Table 2 we
select the uncertainty estimator having the highest correlation with the
ngular error in terms of PCC, and show in Fig. 2 the five images having

the highest uncertainty. We observe that the majority of the reported
mages contain large objects with uniform color, which creates ambi-
uity in distinguishing between the contributions of the illuminant and

surface reflectance. Additionally, some of these images belong to the
‘‘hard images’’ category identified by [26], and others contain multiple
illuminants. In the top right corner of each image it is also reported
he worst quantile to which the angular error belongs to (e.g., W-1%
eans that the image belongs to the first percentile of highest angular

errors for a given method). We can observe how generally the images
belong to the percentiles with largest illuminant estimation errors.

Since the numbers reported in Table 2 do not capture the complete
behavior of the predicted uncertainties, we also report the following
visualization in Fig. 3: given an illuminant estimation method and
an uncertainty estimation method, we sort in increasing order the
stimated uncertainties and group them in ten equal frequency bins.

The illuminant estimation errors associated to the uncertainties in
each bin are then represented with a box plot, showing the 5th and
95th percentiles, the 1st and 3rd quartiles, and the median value.
Visualizations for a sample of the methods are reported in Fig. 3,
while the others are provided in Appendix A.2. From the plot we
can observe how, on average, the uncertainty associated to images

ith low illuminant estimation error is also low, while it increases as
he illuminant estimation error increases. In general, the variance of
lluminant estimation errors of low-uncertainty images is low, while
t increases as the uncertainty increases. From the combination of the
revious observations we can conclude that if the uncertainty is low,
e can be confident that on that image the illuminant estimation error

s also low. On the other hand, if the uncertainty is high then we cannot
e sure if the illuminant estimation error is high or low, which is the
efinition of uncertainty itself.

In addition to the numerical results and the box plots reported in
this section, in Appendix A.4 we also objectively evaluate the practical
usability of the different uncertainty estimations.
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Table 2
Results on Gehler–Shi dataset [33] with REC groundtruth [34]. For each column the best result is reported in bold. For each correlation type the best result per method is
underlined.

Method Angular error [degrees] Correlation (Pearson PCC) Correlation (Spearman SRCC)

MC Aleat. Epist. Intrinsic MC Aleat. Epist. Intrinsic

Mean Med. Trim. Q.-95 Q.-99 Sing.S Dual.S Sing.S. Dual.S.

Cheng et al. [7] 2.49 1.53 1.75 8.34 13.19 – .2986 .4067 – .2330 – .3478 .4945 – .3482
FC4 [10] 2.14 1.44 1.57 6.50 12.75 .4599 .2969 .3672 – .1932 .4568 .3356 .4580 – .2487
FC4 [10] +SS 2.30 1.62 1.80 6.48 10.87 .5331 .3513 .4678 .4980 – .5771 .4572 .5629 .5464 –
Conv. Mean [36] 2.50 1.73 1.90 7.93 12.42 – .3166 .3630 – .2803 – .3814 .4323 – .3686
Conv. Mean [36] +SS 2.95 1.90 2.21 8.78 14.17 – .3266 .6170 .6293 – – .3707 .6273 .5825 –
Corr. Mom. [37] 2.84 2.00 2.23 7.56 12.38 – .1612 .4391 – .3153 – .2547 .4922 – .3281
Corr. Mom. [37] +SS 3.33 2.14 2.33 8.23 16.56 – .3885 .6969 .5337 – – .4208 .5836 .3514 –
LMS Comm. [38] 3.13 2.43 2.57 7.72 12.18 – .2254 .4146 – .4080 – .3512 .5354 – .4170
Table 3
Results on Simple Cube++ dataset [35]. For each column the best result is reported in bold. For each correlation type the best result per method is underlined.

Method Angular error [degrees] Correlation (Pearson PCC) Correlation (Spearman SRCC)

MC Aleat. Epist. Intrinsic MC Aleat. Epist. Intrinsic

Mean Med. Trim. Q.-95 Q.-99 Sing.S. Dual.S. Sing.S. Dual.S.

Cheng et al. [7] 1.39 0.63 0.72 5.44 12.61 – .2782 .4731 – .3850 – .3109 .3527 – .4139
FC4 [10] 1.11 0.58 0.66 3.82 9.59 .4725 .3333 .4503 – .4424 .4887 .3252 .4606 – .4184
FC4 [10] + SS 1.38 0.70 0.85 4.40 9.80 .6452 .4001 .6272 .6316 – .6324 .4049 .6152 .6430 –
Conv. Mean [36] 1.53 0.76 0.91 5.67 11.47 – .3503 .5072 – .4941 – .4228 .5286 – .4568
Conv. Mean [36] + SS 1.90 1.03 1.31 6.03 9.59 – .5704 .6803 .6226 – – .5833 .7056 .5606 –
Corr. Mom. [37] 2.00 1.32 1.47 6.39 9.20 – .4024 .5833 – .3338 – .4608 .6899 – .3870
Corr. Mom. [37] +SS 2.23 1.35 1.55 6.70 14.29 – .6306 .6928 .7366 – – .5768 .7315 .5773 –
LMS Comm. [38] 2.38 1.77 1.83 6.58 12.94 – .3021 .6776 – .2889 – .3329 .6923 – .2571
ig. 2. Top five images on which each method has the highest uncertainty (in decreasing order). In the top right corner of each image it is reported the worst percentile to which
he angular error of the illuminant estimation algorithm applied to the specific image belongs to.
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.1. Intrinsic uncertainty hyperparameters optimization

The weights (𝜆𝐼 𝐸 , 𝜆𝑈 𝐸-𝐿1, 𝜆𝑈 𝐸-𝐶 ) used in all experiments regarding
ntrinsic uncertainty have been selected by hyperparameter optimiza-
ion using FC4 as reference model (see Section 2.1). Here we plot
he Pareto front in terms of median angular error vs. PCC that can
e achieved by sweeping over the weight parameters. The considered
ethods are FC4, Convolutional Mean, and Corrected Moments. Due to

he different training times, the Pareto front for Corrected Moments is
 c

6 
he most dense. The plots are depicted in Fig. 4, where we can observe
 similar behavior of the three intrinsic SS methods: at low angular
rrors the plots have a very high slope, meaning that by allowing a
light increase in the angular error we can have a large improvement
n correlation; at high angular errors we have low slopes, meaning that
o obtain an improvement at high correlation values we have to allow
 large increase in the angular error. Overall we can observe how FC4

an reach the lowest angular errors, while Convolutional Mean reaches
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Fig. 3. Uncertainty visualization. Uncertainty is computed on the Gehler–Shi dataset, sorted in increasing order and grouped in ten equal frequency bins. The illuminant estimation
rrors on the images falling in each bin are represented with a boxplot. Three illuminant estimation algorithms are reported (on the rows: FC4 [10], Convolutional Mean [36] and

Corrected Moments [37]) and five different uncertainties (on the columns: aleatoric, epistemic, intrinsic SS, SS with aleatoric, SS with epistemic).
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Fig. 4. Pareto front for Corrected [37], Convolutional Mean [36] and FC4 [10]
generated by sweeping the weights in Eq. (16).

the highest correlations. Remarkably, Convolutional Mean is the only
method for which SS is able to reach lower angular errors than DS.

3.2. Ablation study

In this section we run an ablation study on the total loss 𝑇 𝑂 𝑇
reported in Eq. (16). In all the configurations tested the term 𝐼 𝐸
s always present, since it is the loss commonly used for training
lluminant estimation methods. The weights 𝜆∗ of the different loss
omponents are the same described in Section 2.1. The results of the

ablation study reported in Table 4 show that using only the illuminant
estimation 𝐼 𝐸 term, the method reaches the lowest average, median,
and trimean angular errors and a poor uncertainty estimation with an
verage PCC correlation of 0.3293 and an average SRCC correlation of
.3748. Adding the 𝑈 𝐸−𝐿1 term in the total loss slightly increases the
verage, median, and trimean angular errors, while slightly reducing
 n

7 
the 99th percentile of the angular error; also the average PCC and SRCC
correlations are slightly reduced to 0.3081 and 0.3708 respectively.
Replacing the 𝑈 𝐸−𝐿1 term with the 𝑈 𝐸−𝐶 term instead, increases
the average, median, and trimean angular errors, and reduces the 99th
percentile of the angular error; the use of this terms shows a great
boost in correlation, with an average PCC correlation of 0.4501 and
an average SRCC correlation of 0.5224. Adding the 𝑈 𝐸−𝐿1 in the
otal loss, i.e. considering all the proposed terms, slightly reduces the
verage, median, and trimean angular errors with respect to the pre-

vious configuration, and obtains the lowest 95th and 99th percentiles
of the angular error; also the quality of the estimated uncertainty
increases, with an average PCC correlation of 0.4626 and an average
SRCC correlation of 0.5359.

3.3. Uncertainty-based cascaded color constancy

In this section we conduct a preliminary experiment providing two
use cases to show how image processing pipelines can leverage the
estimated uncertainty. In the first use case we assume to have two
different illuminant estimation algorithms: the first one is less accurate
but it has a lower count of floating point operations (FLOPs); the second
one is more accurate but also has a higher FLOPs count. Suppose
that the considered image processing pipeline has a maximum limit
on the FLOPs per image, which prevents using the most expensive
lgorithms on all images/frames. In this configuration we can use the
irst algorithm, and only if its uncertainty on the estimate is higher
han a given threshold 𝑡𝑢 we run the second algorithm and use its
stimate. The result of such experiment is reported in Fig. 5, where we

vary 𝑡𝑢 and report the angular error (mean, median, and Q.-95) and
the average number of FLOPs per image on the Gehler–Shi dataset.
In this experiment Conv.Mean is used as the first algorithm (approx.
0.05 G-FLOPs), and FC4 as the second one (approx. 1.65 G-FLOPs). For
both algorithms the uncertainty used is the SS intrinsic uncertainty.
From the plot we can observe how the three error statistics decrease
as the number of G-FLOPs increases. Furthermore we can observe how
this error reduction is highly nonlinear for the 95th-percentile, with a
eduction of about one degree at the cost of 0.26 more G-FLOPs, while
or a reduction of a further one degree, 0.89 additional G-FLOPs are
eeded.
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Table 4
Ablation study on the total loss 𝑇 𝑂 𝑇 for the FC4 [10] illuminant estimation method on Gehler–Shi dataset [33] with REC groundtruth [34]. For each column the best result is
reported in bold. For each correlation type the best result per method is underlined.

Method Loss terms Angular error [degrees] Correlation (Pearson PCC) Correlation (Spearman SRCC)

MC Aleat. Epist. Intrinsic MC Aleat. Epist. Intrinsic

𝐼 𝐸 𝑈 𝐸−𝐿1 𝑈 𝐸−𝐶 Mean Med. Trim. Q.-95 Q.-99 Sing.S Dual.S Sing.S. Dual.S.

FC4 [10] ✓ 2.14 1.44 1.57 6.50 12.75 .4599 .2969 .3672 – .1932 .4568 .3356 .4580 – .2487
FC4 [10] +SS ✓ ✓ 2.21 1.47 1.65 6.77 12.10 .4408 .2571 .3649 .1694 – .4628 .3132 .4692 .2379 –
FC4 [10] +SS ✓ ✓ 2.32 1.65 1.80 6.75 11.38 .5205 .2952 .4711 .5134 – .5819 .3800 .5624 .5652 –
FC4 [10] +SS ✓ ✓ ✓ 2.30 1.62 1.80 6.48 10.87 .5331 .3513 .4678 .4980 – .5771 .4572 .5629 .5464 –
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Fig. 5. Performance of uncertainty-based cascaded illuminant estimation with a limit
on the G-FLOPs per image/frame.

In the second use case we are only interested in performing the
most accurate illuminant estimate. We start from FC4 with SS intrinsic
uncertainty and we investigate if another algorithm, i.e. Conv.Mean
with SS intrinsic uncertainty, can help improving the estimation when
the first uncertainty is high. Let 𝑦̂1 be the illuminant estimated by the
first algorithm and 𝑢1 its estimated uncertainty; let 𝑦̂2 and 𝑢2 be the
corresponding estimates of the second algorithm. If 𝑢1 ≤ 𝑡1, we use the
estimate 𝑦̂1 given by the first algorithm. If 𝑢1 > 𝑡1, we also run the
second algorithm: if 𝑢2 < 𝑢1, i.e. the second algorithm is less uncertain
than the first one on the given image, we use the estimate 𝑦̂2 given
by the second algorithm, otherwise we use 𝑦̂1. The performance of this
cascaded illuminant estimation is reported in terms of angular error in
Table 5, where for sake of comparison we also report the individual
performance of the two algorithms used in the cascade. From the
values reported in Table 5 it is possible to notice how the uncertainty-
ased cascade algorithm is able to improve on all the error statistics

with respect to the best method used in the cascade, with the highest
improvement on the higher percentiles. The second algorithm is run on
bout 61% of the images, and its estimate is actually used in 25% of

the cases, resulting in an average of 1.68 G-FLOPs per image.
Another way in which the estimated uncertainty could be used

s for enlarging color constancy datasets by providing pseudo-labels
or unlabeled images by considering only the predictions with low
ncertainty [43].

4. Conclusion

In this paper we presented a formalization of uncertainty estimation
n color constancy, and we defined three forms of uncertainty that

require at most one inference run to be estimated, opposed to existing
8 
Table 5
Angular error statistics on Gehler–Shi dataset [33] with REC groundtruth [34] for
the uncertainty-based cascaded illuminant estimation compared with the two cascaded
algorithms.

Method Angular error [degrees]

Mean Med. Trim. Q.-95 Q.-99

FC4 [10] + SS 2.30 1.62 1.80 6.48 10.87
Conv. Mean [36] + SS 2.95 1.90 2.21 8.78 14.17
Unc.-based Cascaded IE 2.22 1.55 1.73 6.15 9.86

methods where several runs are needed (e.g. more than 10). We ap-
plied the defined uncertainty estimators to five different categories of
color constancy algorithms: tree-based, deep CNN-based, shallow CNN-
based, statistics-based, and combination-based. Experimental results on
two standard color constancy datasets showed a strong correlation
between the estimated uncertainty and the illuminant estimation error;
in contrast, the uncertainty information that can be extracted from
illuminant estimation methods natively exploiting confidence maps
nd weight maps showed at most just a weak correlation with the
lluminant estimation error. Furthermore, we showed two possible uses

cases of how color constancy algorithms can be cascaded leveraging the
stimated uncertainty to provide more accurate illuminant estimates.

For the purpose of this paper, we focused on uncertainty in single-
frame single-illuminant RGB illuminant estimation. Additional chal-
lenges might be found in a variety of domain extensions, namely:
temporal, spectral, and spatial extensions. Nonetheless, we consider it
important to lay the groundwork for uncertainty estimation in color
constancy at its most widespread basic interpretation. This, in our
opinion, will bootstrap the research on the aforementioned extensions,
which we in fact intend to consider for future developments.

As future work we also plan to apply the defined uncertainty estima-
ors to a larger set of color constancy algorithms. Finally, as a further
esearch direction we plan to exploit the uncertainty information to
reate labels for unlabeled images, thus enlarging the size of color
onstancy datasets and also permitting to design new color constancy
lgorithms exploiting different learning paradigms, as for example
emi-supervised learning.
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Fig. A.6. Aleatoric uncertainty. Left and center: correlation (absolute Pearson and
Spearman) obtained with all 629 illuminant perturbations for the Corrected Moments
+ SS illuminant estimation method. Right: best uncertainty predictors across different
methods. Top: Gehler–Shi dataset [33]. Bottom: SimpleCube++ dataset [35]. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Appendix

A.1. Best aleatoric and epistemic predictors

Fig. A.6 presents a visualization of the data underlying aleatoric
uncertainty estimation. On the left and center we focus on the method
that produces the best uncertainty estimation: Corrected Moments [37]
adapted for single shot intrinsic uncertainty. Here, a heatmap is used to
visualize the correlation (absolute Pearson and Spearman respectively)
obtained using all 629 considered illuminant perturbations, for the two
dataset (Gehler–Shi in the top, SimpleCube++ in the bottom). This
visualization highlights the elevated variability of responses within the
chromaticity diagram, showing that a small change might lead to a
drastic reduction in uncertainty estimation performance. On the right,
we document the best predictive perturbations for the two datasets,
selected across all analyzed illuminant estimation methods for different
folds and runs. Both datasets present a higher density around less satu-
rated illuminants (closer to the center), with Gehler–Shi predominantly
in the cyan area, and SimpleCube++ split between cyan and red.

In Fig. A.7 we report the data underlying epistemic uncertainty, by
plotting the different correlation values (average of absolute Pearson
and Spearman) obtained with percentile orders between 0 and 50. Dif-
ferent illuminant estimation methods, folds and runs are overimposed
and averaged. The monotonically-decreasing trend shows that selecting
one of the closest ground truth illuminants is a good predictor for
uncertainty. We can also observe how a non-zero-order percentile is a
better candidate than the minimum distance, providing a more robust
selection.

A.2. Uncertainty visualizations

In this section we report the box plot visualizations for the remain-
ing combinations of illuminant estimation algorithm and uncertainty
type that are not reported in the main document: MC dropout on
FC4 and FC4+SS (Fig. A.8); Aleatoric uncertainty on [7] and LMS
Committee [38] (Fig. A.9); Epistemic uncertainty on [7] and LMS
Committee [38] (Fig. A.10); Dual Shot Intrinsic uncertainty (Fig. A.11).
For each combination, we sort in increasing order the estimated uncer-
tainties and group them in ten equal frequency bins.
9 
Fig. A.7. Epistemic uncertainty correlation (average of absolute Pearson and Spear-
man) obtained with different percentile orders across different methods. Top:
Gehler–Shi dataset [33]. Bottom: SimpleCube++ dataset [35].

A.3. Performance analysis of MC dropout

In Fig. A.12 we analyze the performance of MC dropout [22] by
varying the number of stochastic forward passes 𝑇 through the trained
model in the range 2 ≤ 𝑇 ≤ 100, 𝑇 ∈ N. Recall that in the comparisons
in the main document we use 𝑇 = 100.

A.4. Uncertainty usability

In addition to the numerical results and the box plots reported in
Section 3 of the paper, in this section we aim to objectively evaluate the
practical usability of the different uncertainty estimations. We define
an uncertainty estimate to be usable if the following three conditions
hold: (i) highest uncertainty values are assigned to images on which
the illuminant estimation method produces the highest errors. (ii)
the standard deviation of the illuminant estimation errors is small,
i.e. images are assigned uncertainty values that correlate well with the
illuminant estimation errors. A sub-optimal configuration takes place
if the standard deviation increases for increasing uncertainty values,
i.e. when a low uncertainty value is assigned we are sure that the
illuminant estimation error is low, but when a high uncertainty value
is assigned we cannot know if the illuminant estimation error is high
or low. (iii) the uncertainty value is close to the illuminant estimation
error.

The first condition is quantified by computing the SRCC between the
median values of the box plots similar to those reported in Figs. A.8,
A.9, A.10, A.11 and a monotonically increasing sequence. The second
condition is quantified by computing the SRCC between the differ-
ence of the 95th and 5th quantiles (i.e. the whiskers) of the previous
box plots and a monotonically increasing sequence. Finally, the third
condition is quantified by computing the Mean Absolute Error (MAE)
between the uncertainty value and the illuminant estimation error.
The computed values are reported in Table A.6. From the reported
numbers we can observe how the MC dropout, epistemic and intrinsic
SS uncertainty reach the highest usability, confirming the qualitative
analysis from Section 3 of the paper. Furthermore, we can observe once
again the improvement that is gained when epistemic uncertainty is
applied to an illuminant estimation method trained with intrinsic SS
uncertainty.
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Fig. A.8. MC dropout uncertainty [22] visualization: FC4 [10] (left), and FC4+SS (right).
Fig. A.9. Aleatoric uncertainty visualization: [7] (left), and LMS Committee [38] (right).
Fig. A.10. Epistemic uncertainty visualization: [7] (left), and LMS Committee [38] (right).
Fig. A.11. Double Shot Intrinsic uncertainty visualization. Left to right: FC4 [10], Convolutional Mean [36], Corrected Moments [37], LMS Committee [38], and [7].
s

A.5. Do existing color constancy methods already implicitly estimate uncer-
ainty?

In this section we aim to understand if existing illuminant esti-
ation algorithms that employ the concepts of confidence-weighted
ooling [10] or weight maps [27] already implicitly quantify the
10 
uncertainty associated to each estimate. To this end, we compute
everal punctual statistics (i.e. average, median, standard deviation,

95th quantile, and maximum) from the confidence maps and weight
maps, and we compute their Pearson and Spearman correlation with
the angular error. The results are reported in Table A.7 on the Gehler–
Shi dataset [33]. In the same table, several statistics on the angular



M. Buzzelli and S. Bianco

m
(
u

f

Pattern Recognition 160 (2025) 111175 
Table A.6
Quantitative estimation of uncertainty usability computed on the Gehler–Shi dataset [33] with REC groundtruth [34]: SRCC between the median values of the boxplots and a

onotonically increasing sequence (M); SRCC between the standard deviations of the bins in the boxplots and a monotonically increasing sequence (W); Mean Absolute Error
MAE) between the uncertainty values and the illuminant estimation error. For each column the best value is reported in bold. For each row the best value for each measure is
nderlined.
Method MC dropout Aleatoric Epistemic Intrinsic Single Shot Intrinsic Dual Shot

M W MAE M W MAE M W MAE M W MAE M W MAE

[7] – – – 0.709 0.673 2.08 0.891 0.939 1.95 – – – 0.891 0.685 1.84
FC4 [10] 0.939 0.976 1.58 0.988 0.952 1.43 1.000 0.952 1.40 – – – 0.988 0.855 1.48
FC4 [10] +SS 0.988 0.952 1.27 0.988 0.939 1.42 0.988 0.939 1.34 0.976 0.988 1.45 – – –
Conv. Mean [36] – – – 0.988 0.915 1.59 0.988 0.976 1.57 – – – 0.976 0.939 1.62
Conv. Mean [36] +SS – – – 0.964 0.915 1.95 0.988 0.891 1.54 1.000 0.988 1.55 – – –
Corr. Mom. [37] – – – 0.891 0.358 2.16 0.903 0.939 1.82 – – – 0.103 0.273 2.40
Corr. Mom. [37] +SS – – – 0.903 0.818 2.65 0.988 0.915 2.47 0.467 0.612 3.03 – – –
LMS Comm. [38] – – – 0.927 0.721 1.79 0.915 0.830 1.66 – – – 0.891 0.782 1.70
Table A.7
Results on Gehler–Shi dataset [33] with REC groundtruth [34]. For each column the best result is reported in bold. For each correlation type the best result per method is
underlined. Correlation is computed between the illuminant estimation error and several statistics (Mean, Median, Standard deviation, 95th quantile and Maximum) extracted from
the confidence map [10] and the weight map [27].

Method Angular error [degrees] Correlation (Pearson PCC) Correlation (Spearman SRCC)

Mean Med. Trim. Q.-95 Q.-99 Mean Med. Std Q.-95 Max Mean Med. Std. Q.-95 Max

FC4 [10] 2.14 1.44 1.57 6.50 12.75 .1101 .1205 .0933 .1019 .0992 .1616 .1646 .1390 .1456 .1459
QU [27] 3.19 1.99 2.32 10.52 13.59 .0922 .0585 .1746 .1893 .2201 .2113 .0776 .2340 .2273 .1452
Fig. A.12. Performance of MC dropout [22] by varying the number of stochastic
orward passes 𝑇 through the trained model.

errors are also reported. The values reported in Table A.7 show that
for both methods the correlation is just weak or even very weak. We
can therefore conclude that these methods do not natively associate an
uncertainty value to their illuminant estimates.

Data availability

No data was used for the research described in the article.
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