l‘)

Check for
updates

Enforcing Temporal Consistency for Color
Constancy in Video Sequences

Marco Buzzelli®™ @, Claudio Rota@®, Simone Bianco®,
and Raimondo Schettini

Department of Informatics Systems and Communication,
University of Milano-Bicocca, Milan, Italy
marco.buzzelliQunimib.it

Abstract. This paper focuses on enhancing temporal color constancy in
video sequences, ensuring that the result not only achieves color accuracy
frame-by-frame but is also consistent over time. Our approach consists
of a three-step process: per-frame illuminant estimation and correction,
video stabilization to ensure temporal consistency, and consensus-based
illuminant correction. By employing consensus-driven illuminant estima-
tion over the result of temporal stabilization, we effectively mitigate
spatial artifacts and concurrently enhance the overall stability of the
sequence. Our method is tested using the Gray Ball and BCC datasets,
showing the potential of integrating temporal stabilization with color
correction processes to enhance the visual continuity of video content.
While our primary objective is to reduce temporal flickering, a signifi-
cant side effect of our approach is the improvement of color constancy
accuracy across frames.

Keywords: Color constancy + Temporal consistency - Temporal
stabilization - Automatic white balance. - Video sequences

1 Introduction

Color constancy is the perceptual property of the visual system that ensures the
colors of objects remain relatively constant under varying illumination condi-
tions [11]. This process is crucial in digital imaging and is typically composed of
two major steps: illuminant estimation and illuminant correction [7]. Illuminant
estimation involves determining the dominant light source color in an image,
while illuminant correction adjusts the colors in the image to appear as they
would under a neutral light source.

Historically, the application of color constancy has been primarily focused
on still images. Today, with the increasing availability of devices able to acquire
video, the application of color constancy to video sequences, known as temporal
color constancy, presents both new opportunities and challenges.

The principal opportunity presented by temporal color constancy is that
the abundance of frames in video sequences allows the problem to be more
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effectively constrained. Single frame color constancy is inherently an ill-posed
problem, characterized by the potential for multiple viable solutions. Typically,
additional information is exploited to constrain this set of solutions, using for
example assumptions on the scene content [18|, knowledge derived from training
data [6], or the physical plausibility of different solutions [9]. A straightforward
assumption often utilized is the “gray world hypothesis”, which posits that the
average reflectance in a scene is achromatic. In the case of temporal color con-
stancy, the additional information crucial for determining illuminant conditions
in a given input often comes from the availability of multiple adjacent frames
depicting a very similar scene content within a video sequence. This inter-frame
assistance enables a more robust estimation of the lighting conditions of indi-
vidual frames, as frames with clearer illuminant indicators can compensate for
neighboring frames where such cues are sparse, ambiguous, or even misleading.

As previously noted, transitioning to the domain of video introduces sig-
nificant challenges, particularly regarding the consequences of incorrect illumi-
nant estimation and correction in the individual frames. In video sequences, the
impact of such errors is, in fact, compounded: not only does each frame suffer
from inaccurate color correction, but inconsistencies in the corrections applied
across adjacent frames can also lead to flickering. This phenomenon disrupts
the visual continuity and creates a distracting and unnatural appearance in the
video stream. Avoiding flickering is particularly important in scenarios such as
social video sharing, film production, surveillance systems, and other multimedia
applications where changes in color perception can be annoying, distracting or
even misleading.

Image color constancy is a problem clearly defined as involving a single input
image, that is analyzed and adjusted to produce one output image with corrected
colors. This approach operates under the principle of one input corresponding
to one output, focusing solely on the colors within that specific image. Temporal
color constancy, on the other hand, is a much less mature field of research, and
is consequently less clearly-defined. In this paper, we distinguish between two
possible sub-categories of temporal color constancy, resulting from the different
nature of existing datasets [8,17]:

— Video Color Constancy: In this scenario, each frame of a video is processed
in consideration of its preceding frames. This method requires adjusting each
frame potentially with a different illuminant, i.e. multiple inputs each with
its own corrected output. For specific applications such as offline video pro-
cessing, it is also possible to include subsequent frames in the elaboration of
the current one, thus breaking the causality constraint.

— Burst Color Constancy: Unlike video color constancy, burst color constancy
treats a sequence of frames as a cohesive whole. All frames collectively inform
the correction process, aiming to achieve a uniform illuminant correction
across the entire burst. This model considers multiple inputs but produces a
singular, consistent output for the whole sequence.
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Figure 1 offers a visual representation of the aforementioned concepts, with “per-
frame color constancy” bridging the gap between image color constancy and
temporal color constancy, at the expense of introducing flickering artifacts.
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Fig. 1. Visual representation of different applications of computational color constancy
to images and video sequences.

There have been some methodologies developed to address temporal color
constancy, discussed in Sect.2. By considering several frames together, these
approaches inherently manage the aforementioned issue of flickering.

Alternatively, another approach involves applying image color constancy
techniques to each individual frame of a video sequence, followed by a stabi-
lization procedure to process the results and to enforce temporal consistency.
Buzzelli and Erba [4] conducted research that delved into the applicability
of image color constancy in the temporal domain. They characterized vari-
ous single-frame methods with respect to their temporal stability. Building on
this foundational work, we implement stabilization as a post-processing step to
enforce temporal consistency. We evaluate the effectiveness of this approach on
the Gray Ball and Burst Color Constancy datasets, and provide several con-
siderations based on the outcomes of our analysis. The advantages of this app-
roach are twofold. First, by decoupling the illuminant correction process from
the video stabilization process, it is possible to select, and combine, the best
algorithms from both tasks. This includes well-established methods for single-
frame color constancy. Secondly, if we resort to a task-independent (agnostic)
method for temporal consistency, the same method may also be used to stabilize
other aspects of the processed video, correcting for example any artifacts also
introduced by per-frame contrast enhancement algorithms.

2 Related Works

In this section we explore the state of the art for temporal color constancy
methods, which explicitly account for the temporal dimension of video sequences
to produce per-frame or per-sequence illuminant correction.

Wang et al. [19] enhanced illumination estimation for video sequences by
exploiting correlations between adjacent frames. Their method segments videos
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into scenes, assuming a consistent illuminant for all frames within a scene. This
scene-based approach aggregates illuminant data across frames to derive a more
stable and accurate chromaticity estimate for each scene. Their experimental
results show that this method outperforms traditional single-frame algorithms
by effectively using multi-frame information to maintain illuminant consistency
across video shots.

Barron et al. [2] introduced the Fast Fourier Color Constancy (FFCC), a
novel algorithm that significantly improves upon the traditional methods of illu-
minant estimation by transforming it into a spatial localization task on a torus
in the frequency domain. Specifically for temporal color constancy, they have
adapted FFCC to handle video sequences more effectively. They incorporate a
smoothing model inspired by the Kalman filter to mitigate errors in individual
frame predictions. This enhancement allows FFCC to maintain consistency and
accuracy across frames, addressing the common challenge of flickering in video
caused by frame-to-frame illuminant estimation variability.

Qian et al. [15] introduced a novel approach to temporal color constancy by
considering multiple preceding frames for illuminant estimation. Their method
utilizes an end-to-end trainable network, RCC-Net, which incorporates convo-
lutional LSTMs to capture compositional representations over time and space
effectively. By adapting the SFU Gray Ball Dataset for a temporal context, they
demonstrate that RCC-Net consistently surpasses both the traditional single-
frame algorithms and their temporal adaptations in terms of performance. This
success is attributed to the network’s ability to exploit sequential frame infor-
mation, enhancing the accuracy of color constancy across video sequences.

Later, Qian et al. [17] expanded the scope of color constancy research by
introducing a benchmark for Burst Color Constancy (CC), with a method
that uses multiple frames from a sequence to estimate the illumination color
of a shot frame, challenging the traditional single-frame approach. Their bench-
mark comprises 600 real-world sequences captured with a high-resolution mobile
phone camera, a fixed train-test split for consistent evaluation, and a baseline
method that demonstrates high accuracy across this new and previous datasets.
Their study also reports results for over 20 well-known color constancy meth-
ods, including recent state-of-the-art developments. Additionally, the method
has been enhanced by integrating a more robust backbone network for semantic
feature extraction and a 2D LSTM for more effective spatial recurrent processing.

Buzzelli and Erba [4] addressed the limitations of traditional evaluations of
color constancy algorithms, which typically rely on angular error analysis of
static images. Recognizing the growing use of video in consumer technology,
they proposed an expanded evaluation framework that includes temporal and
spatial stability. This approach assesses how well these algorithms perform under
varying scene conditions unrelated to illuminant changes, like motion of subjects
or the camera. Using stable sequences from the Gray Ball and Burst Color
Constancy datasets, their analysis revealed that while some algorithms excel
in minimizing angular errors, they may falter on stability metrics. This work
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emphasizes the need for multi-faceted evaluation criteria in the realm of color
constancy, particularly for video applications.

Zini et al. [21] introduced COCOA, a novel strategy for combining color con-
stancy algorithms through a compact neural network architecture. This archi-
tecture processes and amalgamates the illuminant estimations from various algo-
rithms, each based on different assumptions about the input scene content.
COCOA is versatile, applicable both to single-frame images and video sequences,
the latter utilizing a Long Short-Term Memory (LSTM) module to manage
varying-length sequences. The approach is tested using only learning-free algo-
rithms that rely on simple image statistics, experimenting on the Shi-Gehler
and NUS datasets for still images, and the Burst Color Constancy dataset for
videos. Their results indicate that COCOA surpasses other combination strate-
gies in performance, achieving illuminant estimation accuracy on par with more
complex and computationally intensive methods. Additionally, the effectiveness
of COCOA is maintained even with fewer training instances, and the study
includes an assessment of each contributing method’s impact on the final esti-
mation accuracy.

3 Proposed Method
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Fig. 2. Visual representation of the proposed three-step method to enforce temporal
consistency for color constancy in video sequences.

Let S = {x1, 22, ...,x;, ...} be a sequence of frames x. By targeting video color
constancy, our objective is to produce an illuminant estimation y; for each frame,
in the form of an RGB triplet. This relationship can be expressed through the
function f, mapping the sequence of frames to their corresponding illuminant
estimations:

E=f(S)={y1,y2: - Yir - }- (1)

We address the task through a three-step process: per-frame correction, tem-
poral stabilization, consensus-based correction, as represented in Fig. 2.

In the first step, we generate a preliminary estimation y} for each frame,
using a single-frame method g, and then we apply the corresponding illuminant
correction with function h:
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which produces a potentially-unstable sequence S’ = {z/, 2%, ..., 2%, ...}. We refer
the reader to Sect. 4.2 for the specific selection of methods g used in our exper-
imental setup. As described by Eq.2, before moving to the second step it is
essential to apply the estimation as a correction on the original input x, because
the temporal stabilization methods used in this work are designed to work with
images (frames z}) rather than direct estimations (RGB triplets y;). The cor-
rection function h includes a von Kries-like diagonal transform [13], as well
as gamma delinearization. These adjustments help produce images that more
closely resemble sSRGB outputs, which are better suited for the general-purpose
temporal stabilization methods employed.

In the second step, we stabilize the sequence of corrected frames z} using a
video stabilization method m:

S" =m (8" = {2, 2y, ...x] ...} (3)

We refer the reader to Sect. 4.3 for the specific selection of methods m used in
our experimental setup. Theoretically, this process yields a stabilized sequence
of frames. However, practical challenges may arise:

1. Local artifacts could be introduced by enforcing temporal consistency, poten-
tially affecting the visual quality of the sequence.

2. The output from this two-step process cannot be directly compared against
the estimations from the initial single-frame method using standard color
constancy metrics.

To address these issues, in the third and final step we extract a per-frame
stabilized illuminant by consensus [5]: we calculate the average illuminant for
each frame by taking the ratio of the corrected frame z! to the original frame
z; and then averaging this ratio:

y- Ly (fé’@)) v, € 8. (4

|zi| = \wi(p)

Each original frame z; can then be re-corrected globally using the stabilized
illuminant y; with the application of an adjusted von Kries diagonal transform.

4 Experimental Setup

4.1 Selected Datasets

Gray Ball. The Gray Ball dataset [8] is one of the few datasets potentially
suitable for video color constancy. It comprises 11,346 images organized into 15
sequences, with many shots captured at close intervals. The dataset was recorded
using a Sony VX-2000 digital video camera. Although it is an older dataset and
lacks raw images, we follow Buzzelli and Erba’s approach by processing a linear
version of the dataset for illuminant estimation and correction. Concerning the
presence of video cuts, the original sequences were manually curated into 337
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smaller sequences to ensure only smooth transitions in scene content. From these,
168 sequences deemed stable were selected for further analysis, based on the
extraction of MIC and STD metrics on the ground truth illuminants (see Egs. 5
and 7). According to Buzzelli and Erba, the most and least stable color constancy
methods on the Gray Ball dataset are found to be Second-order Gray Edge
(GE2) [18] and the Grayness Index (GI) [16], respectively, from a benchmark
of 11 methods. For the purposes of this paper, we will focus on evaluating the
performance of these two extremes.

Burst Color Constancy (BCC). The BCC dataset [17], also known as the
Temporal Benchmark dataset, was introduced by Qian et al. for burst color
constancy. It comprises 600 sequences of varying lengths, ranging from 3 to 17
frames. These are divided into 400 sequences for training and 200 sequences
designated for the test set, the latter of which we utilize in our analysis. The
images were captured using a Huawei Mate 20 Pro mobile phone and are stored
in a proprietary 16-bit RAW format. Additionally, the dataset includes 8-bit
PNG images for each sequence. A SpyderCube calibration target was placed
in the scene immediately after the sequence acquisition to provide an out-of-
sequence reference shot, representing the entire video sequence. According to
Buzzelli and Erba, the most and least stable methods for color constancy on
the BCC dataset are Sensor-Independent illumination Estimation (SIIE) [1] and
White Point (WP) [18], respectively. For the purposes of this paper, we will focus
on evaluating the performance of these two extremes.

4.2 Selected Color Constancy Methods

Based on the preliminary experiments reported in Sect.4.1, we have focused
our experimentation on the following algorithms for single-frame computational
color constancy.

White Point (WP). The White Point method for color constancy is based
on the assumption that the brightest color present in a scene, is white under a
neutral illuminant. Although this method is straightforward and computation-
ally efficient, its performance can vary significantly depending on the presence
of truly neutral colors in the scene.

Second-order Gray Edge (GE2). Developed by Van de Weijer et al. in
2007 [18], the Second-order Gray Edge method extends the gray world hypoth-
esis by considering higher-order derivatives of color edges in the image. This
approach posits that changes in edge colors in a scene are predominantly due to
variations in the scene illumination. By analyzing the second-order derivatives,
this method aims to more accurately estimate the global illuminant than simpler
methods.

Grayness Index (GI). Introduced by Qian et al. in 2019 [16], the Grayness
Index method focuses on identifying pixels within an image that appear to be
achromatic or’gray’ under a wide range of lighting conditions. These gray pixels
are assumed to reflect the true color of the illuminant, as they exhibit minimal
hue but varying intensities. By aggregating the colors of these gray pixels, the
method estimates the scene’s illuminant.
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Sensor-independent Illumination Estimation (SIIE). Proposed by Afifi
and Brown in 2019 [1], this method aims to provide a robust solution to the
color constancy problem that is independent of camera sensors. The approach
uses a deep neural network trained on a dataset comprising multiple cameras
with diverse spectral sensitivities. By doing so, it learns to generalize illumination
estimation across different imaging conditions without being biased towards any
specific camera sensor characteristics.

4.3 Selected Temporal Consistency Methods

For the purpose of this paper, we will focus on two well-known algorithm for
task-agnostic (blind) temporal consistency, whose publicly-available code allows
us to experiment their applicability in the domain of color constancy.

Lai et al. 2018 Lai et al. [14] introduced an end-to-end solution utilizing a deep
recurrent network to enforce temporal consistency across video sequences. Their
method operates by processing both the original unprocessed video and the indi-
vidually processed frames to output a video with enhanced temporal consistency.
This approach is designed to be algorithm-agnostic, meaning it does not depend
on the specifics of the image processing techniques applied to the original video.
The network is trained to minimize both short-term and long-term temporal
losses as well as perceptual loss, balancing temporal stability with perceptual
similarity to the processed frames. Notably, their method operates without the
need for optical flow computations, allowing for real-time performance even on
high-resolution videos. The approach was tested on various tasks such as artis-
tic style transfer, enhancement, colorization, image-to-image translation, and
intrinsic image decomposition.

TDMS-Net. Zhou et al. [20] framed temporal consistency as a temporal denois-
ing problem aimed at mitigating flickering in previously unstable pre-processed
frames. To tackle this, they introduce a novel model called the Temporal Denois-
ing Mask Synthesis Network (TDMS-Net). This network is designed to synthesize
temporally consistent frames by jointly predicting a motion mask, soft optical
flow, and a refining mask. The approach taken by Zhou et al. learns temporal
consistency directly from the original video and its temporal features, which are
then used to refine the output frames.

5 Results

5.1 Assessing Temporal Stabilization
Buzzelli and Erba [4] refer to a temporally stable sequence as a sequence that:

1. Does not contain video cuts.
2. Does not involve abrupt illuminant changes.
3. Does not span a wide set of illuminants (even if gradually changing).
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Point 1 is addressed at dataset selection level: it involves manual processing
for the Gray Ball dataset, as described in Sect. 4.1, while it is valid by assumption
for the BCC dataset.

The identification of abrupt illuminant changes is achieved by quantifying
the"Maximum Illuminant Change" (MIC) in the estimated illuminant y =
(y(R),y(G),y(B)) between consecutive frames. More precisely, for each pair of
consecutive frames in a sequence S, we measure the angular error between their
ground truth illuminants and then we select the maximum of such errors:

MIC (S) = max (err (y;, ¥it1)), ¢=1...|5]—1. (5)

As angular error, we refer to the recovery error [12], which computes the angle
between the RGB vector representing the ground truth illuminant U with the
RGB vector representing the estimated illuminant V:

u-v
err (U, V) = arccos () , (6)
vl
where “-” is the dot product, and “||...]|” the Euclidean norm. Alternatively, the

reproduction error [10] may be also used.

To identify sequences spanning a large range of illuminants, the chromaticity
Standard Distance (STD) is used as a metric for scatteredness. Specifically, we
first convert the ground truth illuminants into Angle-Retaining Chromaticity
(ARC) [3]: a 2-dimensional representation where Euclidean distances corre-
spond to angular distances in the original RGB space. Then, we compute a
2-dimensional generalization of the concept of standard deviation, defined as:

S| S|

STD(S) = || Y ==l 2 e 7

i=1

where (g, o) are the ARC coordinates of the i-th illuminant of sequence S,
and (0, ) is the average of each ARC coordinate for the sequence.

5.2 Quantitative Results

In Table1 we report aggregate results for the enforcement and assessment of
temporal consistency in the domain of temporal color constancy. Specifically,
we focus on three groups of images: the Gray Ball dataset (split into stable
and unstable sequences following the first criterion from Sect. 5.1), and the BCC
dataset. For each, we analyze the effect on the most stable algorithms for com-
putational color constancy as highlighted in Sect.4.1 (GE2 [18] and GI [16]
respectively for Gray Ball, and SIIE [1] and WP [18] respectively for BCC).
We first extract statistics on these algorithms, labelled as “Original”’, measuring
both color constancy accuracy via the angular error (‘err’ from Eq. 6), and base-
line temporal consistency via STD and MIC from Eq.7 and Eq.5 respectively.
Focusing only on temporal consistency, in fact, would provide an incomplete
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Table 1. Average statistics, expressed in degrees, for the impact of temporal consis-
tency in temporal color constancy. The lower, the better. Best results in bold.

Most stable algorithm Least stable algorithm

GE2 [18] GI [16]

err SID MIC err SID MIC
Gray Ball(stablesequences) Original 5.098 1.139 1.896 7.542  14.178 |10.117

Laiet al. [14] |5.464 |1.737  |3.040  |7.266 |3.779 | 7.364

TDMSNet [20] |5.194  [1.373  2.241 |7.235 |3.589 |7.347
(A Laietal) | (+0.366) (+0.598)  (+1.144) | (-0.276) | (-0.399) | (-2.752)
(A TDMSNet) | (+0.096) | (+0.234) | (+0.345) | (-0.307) | (-0.590) | (-2.770)

GE2 [18] GI [16]
err SID MIC err SID MIC
Gray Ball(unstablesequences) | Original 6.628 2.258 3.550 7.208 4.984 12.969

Laiet al. [14] |7.201  |2.668 |5.009 |6.990 |4.795 |10.506
TDMSNet [20] |6.646 | 2.539  |4.141 | 7.205 |4.616 | 10.194
(A Laiet al.) | (+0.573) (+0.410) | (+1.459)  (-0.219) | (-0.189) | (-2.463)
(A TDMSNet) | (+0.018) | (+0.281) | (+0.591) | (-0.003) | (-0.368) | (-2.775)

SIIE [1] WP (18]
err SID MIC  |err SID  [MIC
BCC Original 4494|2561  |4.971  |6.986 | 5.128 |11.253
Lai et al. 4483|2594 4817 6432 4227 | 7.961

TDMSNet 4.389 [2.433 | 4.479 |6.098 |3.767 |7.081
(A Laietal) |(-0.011) |(40.033) | (-0.154) | (-0.554) | (-0.901) | (-3.292)
(A TDMSNet) | (-0.105) | (-0.127) | (-0.492) | (-0.888) | (-1.361) | (-4.172)

view of the overall performance, since an hypothetical “Do-nothing” algorithm
would produce results that are perfect in terms of temporal consistency, but
useless in terms of actual color rendition. From this baseline, we then evaluate
the effect of enforcing temporal consistency through the method by Lai et al.,
and TDMSNet, following the methodology defined in Sect. 3.

Considering that, for all involved measures, a lower result is better, we can
observe how temporal consistency is always improved for color constancy algo-
rithms that were originally found to be extremely unstable. On the other hand,
already-stable algorithms appear to be negatively affected (on average) by enforc-
ing temporal consistency in the Gray Ball dataset, and produce mixed results
on the BCC dataset. Finally, it may be observed that, despite not actively work-
ing to improve the angular error, temporal consistency methods Lai et al. and
TDMSNet also have a beneficial impact on angular error itself as a byproduct
of temporal stabilization: this is due to the inherent removal of outliers in the
sequence of per-frame estimated illuminants.

5.3 Qualitative Results

In addition to the quantitative analysis, we report in the following some visual-
izations for a qualitative assessment of the enforcement of temporal consistency.
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Fig. 3. Temporal stabilization on sample sequences. For each, we show the original
sequence (top), the output as stabilized with Lai et al. (middle), and the output as
stabilized with TDMSNet (bottom). We show the sequences on the left, and the plots
of illuminant change (Eq.5) on the right.
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Fig. 4. Temporal stabilization on sample sequences. For each, we show the original
sequence (top), the output as stabilized with Lai et al. (middle), and the output as
stabilized with TDMSNet (bottom). We show the sequences on the left, and the plots

of illuminant change (Eq.5) on the right.



286 M. Buzzelli et al.

s ®

®

llluminant change [°]
s o

Illuminant change [°]

0 g 10 15 20 25 30 35

Illuminant change [°]

N
S

Q
[l
[ |
15 i
3 I
g I
g I
S0 I
£ I
5 I °
€ o} [ d 0
2° g oo | | / \O
/ o
R 90 6oy 0,0° \
0 5 10 15 20 25 30
Frame
20
s
I3
g
2
210
£
g
5s R Lo
- e} [ Ob
/ [ & /
oloood QOOooO 00090%0e J
0 5 10 15 20 25 30
Frame
20
515
2
5
g
210
£
g
§ 5 o \ %
= S Y o 5
0L000d 000 %000%00d IS)
0 5 10 15 20 2 30

Frame

Fig. 5. Temporal stabilization on sample sequences. For each, we show the original
sequence (top), the output as stabilized with Lai et al. (middle), and the output as
stabilized with TDMSNet (bottom). We show the sequences on the left, and the plots
of illuminant change (Eq.5) on the right.
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Figures 3, 4 and 5 present a selection of sample sequences on the left, and the cor-
responding plots of illuminant change between consecutive frames on the right
(whose maximum corresponds to M IC). For each, we show the original sequence
(top), the output as stabilized with Lai et al. (middle), and the output as stabi-
lized with TDMSNet (bottom). The second sequence in Fig. 3 showcases a clear
result where temporal stability is improved with respect to the original sequence,
since the tint on the main subject’s shirt is more stable. Nonetheless, some vari-
ability is still observable, as also documented by the corresponding illuminant
change plot.

6 Conclusions

In this study, we have explored the challenges of achieving temporal color con-
stancy in video sequences, a critical area in the advancement of automatic
white balance and color correction. Our proposed method, which combines
per-frame color correction with advanced temporal stabilization techniques,
addresses the inherent variability and instability in video illuminant estimation.
Through experiments conducted using the Gray Ball and BCC datasets, our app-
roach demonstrated improvements in maintaining color consistency across video
frames compared to traditional single-frame methods, localized to sequences that
were originally very unstable. The use of consensus-driven illuminant correction
ensured that no spatial artifacts are introduced by the temporal stabilization
step.

Future work will focus on refining these techniques and exploring their appli-
cations in more diverse scenarios, including real-time video processing and inte-
gration into consumer video devices.
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