IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

A Convolutional Framework for Color Constancy

Marco Buzzelli

Abstract— We introduce a convolutional framework (CF) for
computational color constancy, building upon the established
low-level image feature-based framework, which utilized sim-
ple image statistics for illuminant estimation. Our framework
expands upon this through an end-to-end learnable neural
architecture. This adaptation enables the learning and usage
of advanced filters that are not restricted to Gaussian Kker-
nels operating on individual color channels, thus generalizing
the capabilities of the original framework. Additionally, our
general framework supports deeper convolutional architectures,
thus increasing its computational power. It can also be effi-
ciently applied to estimate multiple spatially varying illuminants
within a single scene. Our experimental results on standard
datasets demonstrate that the CF outperforms the best methods
in the low-level framework, improving the illuminant estima-
tion accuracy by up to 34% for single illuminant estimation
and 30% for multiple illuminants estimation. Additionally,
our framework exhibits superior performance even when the
number of training images is reduced. Finally, we document
the inference speedup of our implementation reaching up to
30x, making the CF especially suitable for applications where
efficiency is critical. Source code and trained models available at:
https://github.com/MarcoBauzz/convolutional-color-constancy

Index Terms— Automatic white balance, color constancy, con-
volutional neural networks, framework, illuminant estimation.

I. INTRODUCTION

MONG the fundamental problems in computer vision is

that of estimating the real color of the objects in the
acquired scene: the observed color in fact depends on the
surface spectral reflectance of the object, on the illumination,
on their relative positions, and on the observer’s characteris-
tics. This problem is called (computational) color constancy
and many computer vision tasks, both in the image and the
video domains, can exploit it as a preprocessing step in order
to guarantee that the observed color of the objects in the scene
does not change in different illumination conditions.

Color constancy often consists of two successive steps:
1) estimating the color of the illuminant in the scene and
2) rendering the colors of the objects in the scene as if they
were viewed under a white light source. A common choice
for the latter step is the diagonal von Kries model [1]: an
independent scaling of the color components of the pixels
by the corresponding components of the estimate. The former
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step, on the other hand, is usually where methods in the state
of the art differ.

Despite its apparent simplicity, the problem of color con-
stancy is very challenging for both human and computer
vision systems [2], [3] as it is inherently underdetermined.
This is the reason why many color constancy algorithms have
been proposed in the state of the art, each based on differ-
ent assumptions. A common taxonomy of color constancy
methods divides them into statistics-based (or parametric) and
learning-based methods.

Historically, the first proposed methods belong to the cate-
gory of statistics-based solutions. These are based on simple
assumptions, such as the white patch (WP) (or max-RGB) [4]
that estimates the light source color from the maximum
response of the different color channels, or the gray world
(GW) [5] that assumes that the average reflectance in the
scene is achromatic. These assumptions were later merged
in the shades of gray (SoG) hypothesis [6], which assumes
that the L” Minkowski norm of the image is achromatic, and
further refined by the gray-edge hypothesis [7], which assumes
that the L? Minkowski norm of the nth order derivative of
the image is achromatic. Other methods in the parametric
or statistics-based category are for example the one proposed
by [8], which exploits bright pixels in the image to estimate
the illuminant color, or the one proposed by [9], which selects
bright and dark pixels using a projection distance in the
color distribution and then applies a dimensionality reduction
technique to estimate the illuminant color.

The second category of methods is represented by learning-
based solutions. Early learning-based methods were based
on handcrafted features extracted from the images. Repre-
sentatives of this type of method are for example the one
proposed by [10], where the Weibull parameterization (e.g.,
grain size and contrast) is used to capture the image char-
acteristics, or the one proposed by [11], where a set of
general purpose low-level visual properties taken from the
pattern recognition and image analysis fields are used to
train a classifier to select which algorithm to apply to the
particular input image. Other notable examples of this type
of solution are for example the works of [12], [13], [14],
[15], and [16]. Later methods in this category are based
on deep learning, and range from those fine-tuning neural
architectures designed for image recognition [17], to those
designing ad hoc architectures [18], [19] or more elabo-
rated training schemes (e.g., [20], [21]), to those exploiting
generative models (e.g., [22], [23], [24], [25]). Approaches
like sensor-independent frameworks [26] and discriminative
feature learning [27], [28] have improved robustness and
generalization. Cross-camera adaptation techniques [29] and
contrastive learning strategies [30] further refine real-time
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applications and feature specificity. Further improvements
have been reached, thanks to transfer and adversarial learn-
ing [31], [32], along with ranking-based mechanisms [33] and
chromaticity representations [34]. Learning-based approaches
tend to achieve the best accuracy in terms of illuminant
estimation on standard datasets, but we have reached the
point in which improvements are below the threshold of
what can be detected by a human observer [35]. To reach
higher illuminant estimation accuracy researchers tend to use
wider and deeper models, requiring large labeled datasets for
training, and making them unfeasible for practical uses.

Alongside the proposal of new methods, there are also
works in the state of the art that unify multiple color constancy
algorithms, redefining them as instantiations of a single, more
general, framework. With this aim, Finlayson et al. [12]
presented the correlation framework. They propose to estimate
the illuminant color by correlating the image data and the
prior knowledge about which colors appear under a certain
light. They further show that the correlation framework they
developed is general and can be used to describe several
existing algorithms. In particular, they show that GW [5],
gamut mapping [36], [37], and a neural network approach [38]
relate to different definitions of color, likelihood, and cor-
relation. Finlayson and Trezzi [6] introduced a new color
constancy framework and showed that the max-RGB and the
GW methods can be interpreted as different instantiations of
the error function of the same algorithm, which they call SoG.
In particular, they showed that the max-RGB method is equal
to applying the L* Minkowski norm to each color channel
of the input image independently, and GW is equal to using
the L' norm. van de Weijer et al. [7] further extended the
color constancy framework of Finlayson and Trezzi [6] to
also include color constancy methods derived from the gray-
edge hypothesis. They thus introduced a framework of color
constancy based on low-level image features which includes
the algorithms already included in [6] (i.e., GW , max-RGB,
and SoG) and their newly proposed gray-edge and higher order
gray-edge algorithms. We will refer to this formulation as the
low-level framework in the rest of the article.

After 2007, no other unifying frameworks have been pro-
posed, but in the meanwhile computer vision has entered
the era of deep learning and convolutional neural networks,
leading to a drastic paradigm shift in how different tasks
and challenges are approached. The aim of this work is to
introduce a new unifying framework for color constancy:
the convolutional framework (CF).! The proposed frame-
work extends the low-level framework by [7] combining its
simplicity with the power of deep learning. This allows to
bridge the gap in illuminant estimation accuracy between
simple statistics-based algorithms and recent deep learning-
based algorithms, while keeping a small model size and
fast inference time to target applications where efficiency is
critical.

The main contribution of this article is the CF for color
constancy, and its characteristics are listed below.

1© Source code and trained models available at:
https://github.com/MarcoBauzz/convolutional-color-constancy.
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1) CF replicates the results of the low-level frame-
work [7], originally written in MATLAB, with an
efficient Python/PyTorch implementation. The source
code is made available for public download.

2) It is capable of learning network parameters that must
be otherwise set by hand in the original low-level
framework. Furthermore, the proposed framework has
the ability to learn filter kernels that are not Gaussian,
and it can learn to exploit cross-channel information at
the same computational cost.

3) It provides a search space that can be explored by
neural architecture search (NAS) techniques to design
the best color constancy method for each dataset. The
search space is shown to include recent color constancy
algorithms (e.g., [39], [40]).

Additionally, our convolutional-based implementation allows
for a seamless spatial extension of the framework, thus
producing spatially varying illuminant estimation. In terms
of execution time, our experiments document an inference
speedup gain for the most computationally intensive method of
more than 3x compared to the original low-level framework,
reaching about 30x when exploiting multibatch processing.

The rest of the article is organized as follows: Section II

formalizes the color constancy problem and introduces the CF.
Section III describes how the CF is made learnable. The CF
is extended in Section IV to include deeper architectures and
estimate local, spatially varying scene illuminants. Sections V
and VI respectively introduce the experimental setup and
results. Finally, Section VIII concludes the article.

II. CONVOLUTIONAL FRAMEWORK

In the image acquisition process, the values for a Lambertian
surface located at the pixel with position x can be seen as a
function f(x) that mainly depends on three physical factors

£ =/I(x,l)S(x,l)C(l)d/l (1)

where A is the wavelength, I(x, A) is the illuminant spectral
power distribution, S(x, A1) is the surface spectral reflectance,
C(A) are the sensor spectral sensitivities, and the integration
is performed over the visible spectrum. With this notation the
goal of color constancy is to estimate the color of the scene
illuminant, i.e., the projection of I (x, A) on the sensor spectral
sensitivities C(A4)

e(x) = / 1(x,2)C(A)dA. 2)

Usually, the illuminant color is estimated up to a scale factor
[i.e., k-e(x)] as it is more important to estimate the chromatic-
ity of the scene illuminant rather than its overall intensity [41].

Since the only information available is the sensor response
f(x) across the image, color constancy is an underdetermined
problem [42] and thus further assumptions and/or knowledge
are needed to solve it. Several computational color constancy
algorithms have been proposed in the state of the art, each
based on different assumptions. van de Weijer et al. [7]
proposed a framework from which several algorithms can be
instantiated: the low-level framework. The aim of this section
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is to reformulate the low-level framework with an equivalent
definition based on convolutional operations, laying the basis
for its eventual extension as later described in Section IV.
The general hypothesis of the original low-level framework is
described as follows:

U

where n identifies the derivative order, o is the standard devia-
tion for a Gaussian filter such that f°(x) = G,* f(x), and p is
the order of the Minkowski norm. A further assumption made
by the low-level framework, which is also the most common
assumption made by other algorithms, is that the color of the
light source is uniform across the scene. This is reflected in the
fact that the spatial position (x) in the right-hand side of (3)
is dropped. Such behavior is generalized by our framework,
thus enabling spatially varying multi-illuminant estimation as
described in Section I'V-B.

The framework described in (3) includes six color constancy
algorithms that can be generated with different combinations
of n, p, and o.

9" f7 (x)

ax"

14 1/p
dx) =k-e"P? 3)

1) GW, by setting [n, p,o] =[O0, 1, 0].

2) WP, by setting [n, p, o] = [0, oo, 0].

3) SoG, by setting [n, p, o] = [0, p, O].

4) General GW (gGW), by setting [n, p, o] = [0, p, o].

5) Gray edge first order (GEl), by setting [n, p,o] =
[1, p,o].

6) Gray edge second order (GE2), by setting [n, p,o] =
2, p,o].

The appropriate values for these settings have been in the past
optimized with a grid search approach on given datasets [18],
whereas the framework presented in this article allows their
generalization and optimization via gradient backpropagation.

The framework described by (3) can be directly translated
in the convolutional neural network architecture described in
the following, and is reported in Table I. Let us assume that
the input image has size H x W x 3. The first layer of the
CNN is a convolutional layer (Conv2d-1) with size h x w
x 3 x 9 with [(h — 1)/2, (w — 1)/2] padding transforming
the three-channel input into a H x W x 9 tensor. The second
layer is an exponentiation layer (Pow—1) that takes the power
of each element in input with exponent «; and returns a tensor
with the result. The third layer is a pointwise convolution
layer (Conv2d-2) with size 1 x 1 x 9 x 3 that linearly
combines the activations across channels to obtain as output a
H x W x 3 tensor. The fourth layer is another element-wise
exponentiation layer (Pow—2) with exponent o, which returns
a tensor having the same size as the input. The last layer is
a 2-D power-average pooling layer (LpPool2D) with norm
type p and having kernel size H x W to generate the final
illuminant estimate with size 1 x 1 x 3. Varying p the
behavior of the layer changes from Max pooling (p = 0c0)
to Sum pooling (p = 1, which is an unscaled version of the
Average pooling).

TABLE I
CNN ARCHITECTURE OF THE CF

Layer \ Size Padding Value  Output size
Input HxWx3
Conv2D-1 | hxwx3x9 [(h-1)/2,(w-1)/2] HxWx9
Pow-1 a1 HxWx9
Conv2D-2 Ix1x9x%x3 HxWx3
Pow-2 a9 HxWx3
LpPool2D [H W] p 1x1x3

A. Initialization

The six color constancy algorithms described above can be
replicated in the equivalent CF by properly initializing the
available parameters and hyperparameters.

We will identify the convolutional filters using the following
syntax, under a base-1 indexing system:

Cy [row, column, input channel, output channel]. 4)

All filters are initialized with zeroes, unless otherwise speci-
fied.

1) Gray World: The Conv2D-1 layer is initialized so that
it applies the identity function

Ci,L,1,11=0Cil:, 52,21 =Cil, 5, 3,3] = lirr%)GU ®))
ie.,

e}z o
:CIHEW’%W’M}:L 7

The Pow—1 and Pow—-2 layers are initialized with oy = oy =
1. The Conv2D-2 layer is initialized so that it applies the
identity function

G[1,1, 1,11 =Co[1,1,2,2] = C5[1,1,3,3] =1. (8)

Finally, the LpPoo12D layer is initialized with p = 1.

2) White Patch: It can be replicated with the same initial-
ization of the GW with the only difference of the LpPool12D
layer, to be initialized with p = co.

3) Shades of Gray: It can be replicated with the same
initialization of the GW, with the only difference of the
LpPool2D layer, to be initialized with the corresponding
p value of the nonconvolutional version that we want to
replicate.

4) General GW: The Conv2D-1 layer is initialized so that
it applies the Gaussian smoothing G, independently to the
three input channels

Cl[:,:,],l]ZCI[:, :7272]=C1[:’:’333]:G0' (9)

The Pow—1 and Pow—-2 layers are initialized with o] = oy =
1. The Conv2D-2 layer is initialized so that it applies the
identity function

C[1,1,1,1]1=C1[1,1,2,2] = C»[1,1,3,3] = 1. (10)

Finally, the LpPool2D layer is initialized with the corre-
sponding p value of the nonconvolutional version that we want
to replicate.
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TABLE I

SUMMARY OF THE INITIALIZATIONS NEEDED TO REPLICATE THE BEHAVIOR OF THE CORRESPONDING NONCONVOLUTIONAL COLOR CONSTANCY
ALGORITHMS INCLUDED IN THE FRAMEWORK

Method | Conv2D-1 Pow-1 Conv2D-2 Pow-2 LpPool2D
GW [Ci[:1,1]=C1[,52,2) = Ci[1,5,3,3] = limp50 G 1 Ca[1,1,1,1] = C2[1,1,2,2] = C2[1,1,3,3] =1 1 1
WP ‘C’l[:,:,l,l] =Ci[52,2] = Ci[:,1,3,3] = lime 0 Go 1 C2[1,1,1,1] = C2[1,1,2,2] = C2[1,1,3,3] =1 1 o)
SoG  |Ci[5:,1,1] = Ci[5,2,2) = Ci[1,5,3,3] = limp 50 G 1 Co[l,1,1,1] = C2[1,1,2,2] = C2[1,1,3,3] =1 1 p
eGW | Ci[5 1,1 =C1]552,2] = C1;,5,3,3] = Go 1 Coll,1,1,1] = C[1,1,2,2] = Ca[1,1,3,3] =1 1 P
w | GEnATSRAIARSaTE o dhimtdis 4
, ' ; Y 5[1,1,3,3] = C2[1,1,6,3] = 1

Ciliyy1,1] = Cil5,2,2] = Cil1,3,3,3) = £6¢ Co[1,1,1,1] = Ca[1,1,2,2] = C2[1,1,3,3] = 1
GE2 Cil::,1,4] = Cil:, 5, 2,5] = Cils, 5, 3,6] = &5 2 Cal1,1,4,1] = C2[1,1,5,2] = C2[1,1,6,3] =1 3 p

CrboL7] = Ci 2,8 = Ch e 3,9] = 8;5;’ C2[1,1,7,1] = Ca[1,1,8,2] = C2[1,1,9,3] = 2

5) Gray-Edge First Order: The Conv2D-1 layer is ini-
tialized so that it independently applies the first-order partial
derivative along rows and columns of the three Gaussian
smoothed input channels

0G4
Cl[:,:,l,l]zCl[:,:,Z,Z]=C1[:,:,3,3]=a— (11)

X

0G4
Cil;,:, 1,41 =Ci[, 5, 2,51 = Ci[3, 1, 3, 6] = 5y " (12)

y

The Pow—1 layer is initialized with oy = 2. The Conv2D-2
layer is initialized so that it computes the gradient of each
input color channel

G 1,1]1=C[1,1,4,1]1 =1 (13)
C[1,1,2,2]1 =C,[1,1,5,2] =1 (14)
Cy[1,1,3,3]1=C,[1,1,6,3] = 1. (15)

This ensures that in the first channel of the output tensor we
compute the gradient of the red channel, in the second one the
gradient of the green channel, and in the third one the gradient
of the blue channel. The Pow-2 layer is initialized with o, =
1/o; = 1/2. Finally, the LpPool2D layer is initialized with
the corresponding p value of the nonconvolutional version that
we want to replicate.

6) Gray-Edge Section Order: The Conv2D-1 layer is
initialized so that it independently applies the second-order
partial derivative of the three Gaussian-smoothed input chan-
nels along rows, columns, and the mixed second-order partial
derivative

32G,
Gl L1 =G, 52,21 =il 5, 3,3] = (16)
0x?
3*G,
Cl[:7:7 ]’4]=C1[:1 5 27 5] =C1[:’:’396]= a9 (17)
9y?
%G,
Gl L7 =Gl 2,81 =Gl 1, 3,9 = . (18)
axy

The Pow—1 layer is initialized with o; = 2. The Conv2D-2
layer is initialized so that it computes the gradient of each

input color channel

C2[1917151]=C2[171’272]:C2[1’193’3]21 (19)
G[1, 1,4, 11 = G[1, 1,5,2] = G5[1,1,6,3] =1 (20)
C[1,1,7, 11 = C1[1,1,8,2] = C,[1,1,9,3] =2. (21

This ensures that in the first channel of the output tensor
we compute the gradient of the red channel, in the second
one the gradient of the green channel, and in the third
one the gradient of the blue channel. Note that the original
implementation of the low-level framework mistakenly uses
the equivalent of a factor 4 in (21), instead of 2. The Pow-2
layer is initialized with o, = 1/ay = 1/2. Finally, the
LpPool2D layer is initialized with the corresponding p value
of the nonconvolutional version that we want to replicate.

A summary of the initializations needed to replicate the
behavior of the corresponding nonconvolutional color con-
stancy algorithms included in the framework is reported in
Table II.

In addition to the algorithms included in the original low-
level framework, the proposed CF also includes the truncated
version of the same algorithms [43]: in the original low-level
framework, the spatial size of Conv2D-1 (i.e., h = w) is
guided by the Gaussian filter standard deviation o and the
break-off value B: h = w = (B -0 +0.5] - 2) + 1, where
the default is B = 3. The truncated low-level framework
algorithms can be replicated in our CF by specifying the
required filter size needed & x w, which corresponds to setting
a new value for the break-off sigma, that can be even different
in the two directions.

III. LEARNABLE CF

In Section II, we defined a CF that is equivalent to the
low-level framework by [7], and as such it includes the
same family of color constancy algorithms. In this section,
we describe how to render a learnable CF (LCF), providing
access to a larger number of algorithms not covered by the
original framework. For example, we can learn smoothing
and derivative filters that are not Gaussian, or we can learn
to exploit cross-channel information, e.g., color derivatives.
These can be obtained with properly tuned filter weights
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TABLE III

CNN ARCHITECTURE OF THE LCF, WITH PROTECTIONS FOR ASSISTED
BACKPROPAGATION

Layer ‘ Size Padding Value Output size
Input HxWx3
Conv2D-1 | hxwx3x9 [(h-1)/2,(w-1)/2] HxWx9
PReLU init: y = x HxWx9
Pow-1 a1 HxWx9
Conv2D-2 Ix1x9x%3 init: bias = 1 HxWx3
PosReLU HxWx3
Pow-2 g HxWx3
Abs HxWx3
LpPool2D [H W] p>1 1x1x3
Total number of learnable parameters: 27-h-w+41

in Conv2D-1 and Conv2D-2, as we experimentally show
and discuss in Section VI-B1. Additionally, we formulate the
LpPool2D layer so that the exponent p can be learned as
well.

A. Assisting Gradient Backpropagation

In order to enable the learning process, we introduce
a number of modifications to the CF, aimed at ensuring
proper gradient backpropagation. These modifications are also
designed to guarantee the possibility of the CF to learn
all the methods from the low-level framework. The detailed
modifications are summarized in Table III and presented in
the following.

1) A parametric rectifying linear unit (PReLU) [44] is
introduced after the first convolutional layer. This is done
to enforce a sharper nonlinearity than Pow—1 (assuming
that o; > 1), since it has been proven to better guide the
learning process. Specifically, a PReLU is used in place
of a ReLU, since the latter would destroy the negative
values returned by the derivative filter implemented with
Conv2D-1, thus breaking the generalization of low-
level framework. It is initialized with a slope coefficient
set to 1, which corresponds to the identity function.

2) The bias in Conv2D-2 is initialized to a vector of
1 s. A traditional He-based initialization [44] with null
bias was found to occasionally produce all-negative
activations for some of the channels. These would be
destroyed by the PosReLU introduced afterward (and by
any other ReLU-like nonlinearity that can be included
for extension), preventing the gradient from correctly
flowing during the backpropagation, and from guiding
the learning process. By enforcing a reasonably high
initialization bias, this can be avoided.

3) A strictly positive ReLU (PosReL.U) is introduced before
the Pow—-2 layer. This is defined as follows:

PosReLU(x) = max(e, x) 22)

for a sufficiently small €. This layer is devised as a
protection when 0 < a» < 1 (such as for the GEI and
GE2 initializations), since in this case the derivative of
the power of a zero base is not defined, and returns co
in the adopted framework (PyTorch 1.7).

4) The learnable p in LpPool2D is forced to be > 1.
Recall the definition of the pooling layer as follows:

LpPool2D(x) = ,,/pr.
xeX

An unconstrained p was found to hinder the loss mini-
mization when 0 < p < 1, since ¢/ tends to oo for
p — 0. The value of p was therefore forced to be
> 1 by reprocessing it as |p — 1| 4+ 1. Furthermore,
it was initialized to 1 4 € to avoid starting with a null
gradient and thus to bootstrap its optimization.

(23)

IV. EXTENDED LCF

In this section, we present two extensions of the previously
introduced LCF: a generalization of the model architecture to
also include deeper models, and the estimation of multiple
spatially varying illuminants.

A. Deeper Architecture

The CNN architecture of the extended CF (ECF) here
described is reported in Table IV. An analysis of the archi-
tecture shows a deeper model with respect to the one reported
in Table III. In particular, the depth is increased by including
an intermediate convolutional layer Conv2D—-i that can be
repeated N x, and the use of multiple max pooling layers
(Mpool-1 and Mpool-2). A dropout layer is also added
to reduce the risk of overfitting when several intermediate
convolutional layers are used.

The LCF can be instantiated from ECF by setting ¢; =
9 and h,, = w,,, =1 in the first block; excluding the second
block (i.e., N = 0); setting pg =0, he, = we, =1, ¢; =9,
and h,,, = w,, = 1 in the third block; and setting the kernel
size of LpPool12D equal to the spatial size of the output of
the third block, i.e., [k, w,] = [Hs W4] so that the size of
the output is Hs x Ws x 3 =1 x 1 x 3.

The extended LCF also includes two recent color constancy
algorithms: convolutional mean [39] and OneNet [40].

The convolutional mean algorithm can be instantiated by
setting he, = we, =3, ¢c1 =7, hy, = Wy, =2, and oy =1 in
the first block; setting N =1, h,, = w,, = 3, and ¢; = 14 in
the second, intermediate, block; setting p; = 0, h., = w,, =
I, hyy, = wy, = 1, and oy = 1 in the third block; setting
the kernel size of LpPool2D equal to the spatial size of the
output of the third block, i.e., [h, w,] = [Hy W4] so that the
size of the output is Hs x Ws x 3 =1 x 1 x 3, and setting
its norm p = 1 in order to implement an average pooling.

OneNet can be instantiated by setting h,, = w,, =1, ¢; =
64, h,,, = wy,, =8, and oy = 1 in the first block; considering
N = 3 intermediate blocks: Conv2D—-1i with h., = w,,, =1,
¢i1 = 64, and Mpool-i; with h,, = w,,,, = 8; Conv2D-1i,
with h., = w., = 1, ¢ip = 128, and Mpool-i, with A, =

Wy, = l; Conv2D-1i3 with h,, = w,, = 1, ¢iz = 64,
and Mpool-iz with h,,, = w,, = 1; setting p; = 0.5,
he, =we, =1, ¢, =3, hyy, = wy, =1, and ap = 1 in the

third block; and setting &, = w, = 6 and p = 1 in the final
LpPool2D layer so that it results in a Hs x W5 x 3 =1 X
1 x 3 output size for the suggested H x W x 3 = 384 x
384 x 3 input size.
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TABLE IV
CNN ARCHITECTURE OF THE ECF (WITH PROTECTIONS)

Layer ‘ Size Stride Padding Value Output size
Input HxW x3
Conv2D-1 he1 X wel X 3 X ¢ [(hcl — 1)/27 (wd — l)/Q] Hi x Wi X1
PReLU init: y = X Hi x Wi X1
Mpool-1 [hm1 wm1] Sm1 Ho x Wa X c1
Pow-1 i Hy x Wy X 1
Conv2aD-i | hei X we; X 1 x ¢\ [(hei — 1)/2, (we; —1)/2]  init: bias = 1 Ha x Wa x ¢;
Nx< PosReLU Ho x Wy X ¢;
Mpool-i [hmi wmi] Smi Hs x W3 X ¢;
Dropout Pd Hs x W3 x cl(.i)
Conv2D-2 | hea X wez X ¢ x 3H) [(hea —1)/2, (wez —1)/2] Hs x W3 x 3
PosReLU Hz x W3 x 3
Mpool-2 [hmg ’wm2] Sm2 Hy x Wy x3
Pow—2 a2 Hy x Wy x3
Abs Hy x Wy x3
LpPool2D [hp wp) Sp p>1 Hs x W5 x 3

Total number of learnable params: 3hciweic1 + (¢1 min(N, 1) 4+ ¢; max(N — 1,0) (hejweici) + 3heaweac; + ¢1 + Nej+5

M if N > 1 we set c1 = ¢; for the occurrence(s) n = 2, ..., N of the convolutional block

) if N=0 we set ¢; = 1

B. Spatially Varying Illuminant Estimation

In all the instantiations of the CF introduced so far, the
output consisted of a single illuminant estimate for the whole
image. The framework, however, has the flexibility to also
output a local, spatially varying illuminant estimate. This can
be achieved by setting the kernel of the LpPool2D layer in
Table IV to a value smaller than the spatial dimension of the
output of the Pow-2 layer, i.e., h, < Hs and w, < Wy. The
granularity of the spatially varying estimate can be therefore
controlled with the kernel size [k ,w,], its smoothness can be
controlled with the stride s,.

V. EXPERIMENTAL SETUP

In this section, we introduce the image datasets used for the
experiments, as well as the training details.

To test the performance of the proposed CF for the global
illuminant estimation task, two standard datasets of RAW
images including a known color target in each scene are used.
The first one is the ColorChecker dataset [45]. Images in
the dataset were captured using high-quality digital single-
lens reflex (SLR) cameras in RAW format, and are therefore
free of any color correction. The dataset consists of a total
of 568 images. The Macbeth ColorChecker (MCC) chart is
included in every scene: this allows to accurately estimate
the actual illuminant of each acquired image; however, it is
masked to black pixels for training and testing, in order to
prevent the color constancy algorithm from directly exploiting
this information. Multiple versions of the raw images and
ground truth of this dataset have been proposed through the
years: in this work, we use the ‘“recommended” version by
Hemrit et al. [46], [47]. All experiments were run using the
original threefold cross-validation split: for each experiment
we train three instances of our framework using the training
and validation folds for learning, and the test fold for infer-
ence. We collect the estimations on the three test folds and
consequently compute statistics on the whole dataset.

The second dataset is the NUS-8 dataset [9], which is
similar to the previous one: it has been captured using digital
SLR cameras in RAW format with an MCC included in every
scene. Differently from the previous one it has been captured
by eight different cameras and it contains a larger number of
images, i.e., 1853 with around 200 images for each camera.

To test the performance of the proposed CF for the local
illuminant estimation task, we select the MIRF dataset by [48].
The dataset was acquired using a high-quality digital SLR
camera, it is available in RAW format, and it comes with
pixel-wise ground-truth information. The dataset consists of
two parts: the first one is taken in controlled laboratory settings
for a total of ten scenes acquired under six distinct illumination
conditions; the second one is taken in real-world settings for
a total of 20 indoor and outdoor scenes. The experiments on
this dataset are performed using a twofold cross-validation for
each of the two acquisition settings.

Our CF for color constancy was written in PyTorch 1.7.0.
The model was trained using the Adam optimizer [49].
Default learning hyperparameters have been selected as fol-
lows, although a search for optimal values is later presented
in Section VI-D: learning rate 0.05, weight decay 0.0, batch
size 32, and a total number of 1000 training epochs.

In order to assist the learning procedure with a
limited-cardinality training set, we rely on data augmentation
operations, determined after preliminary experimentation.

1) Random rotations between —20°and +20°.

2) Random translation by +10% of the image size.

3) Random shear between —10°and +10°.

4) Random crop between 80% and 125% of the original
image size, with aspect ratio varying between 0.75 and
1/0.75.

Images are then resized to a fixed size: a hyperparameter which
is also explored in this section.
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Fig. 1. Angular error between the estimates given by the low-level framework
and the CF on the ColorChecker dataset.

VI. RESULTS AND DISCUSSION

In this section, different experiments are presented. First,
we perform a thorough comparison of the CF and the low-level
framework in terms of the difference in the estimated illu-
minants, and the difference in inference speed. Then we
exploit the end-to-end learning ability of the CF to perform
a comparison with the state of the art for single global
illuminant estimation, and multiple spatially varying illumi-
nant estimations. In the subsequent experiment, we explore
the hyperparameter space defined by the CF by a sweeping
procedure, and we assess its robustness when reducing the
size of the training set. Finally, we analyze the change in
performance when a model ensembling technique is used.

A. Comparison With Low-Level Framework

In this section, we compare the proposed CF with the
low-level framework in its original MATLAB implementation.
In particular, we are interested in two aspects: first, we want
to ensure that when one instance of the original low-level
framework is instantiated in our CF, it produces the same
illuminant estimates. Second, we want to compare the compu-
tational speed of our CF and the original low-level framework.

In order to assess the difference in the illuminant estimation
provided by the low-level framework and the CF, we consider
each of the six algorithms: WP, GW, SOG, GGW, GEl, and
GE2, using Minkowski norm p = 2 and varying standard
deviation o. For the purpose of these experiments, each
algorithm is executed on the whole ColorChecker dataset,
downscaled with the longest side at 200 pixels, without using
any mask for the exclusion of saturated pixels, and using
the weights in (19)—(21) for the computation of the second-
order derivative. For each image the angular error between the
two implementations is computed: the plot of the average and

median angular error between the corresponding estimates is
reported in Fig. 1 for different values of o.

From the reported plot it is possible to see that the difference
among the estimates given by the low-level framework and the
CF is always lower than 0.001°, mainly due to variations in
numerical precision, and independent of the level of o. For
reference, a literature survey by [35] described a deviation of
1° in angular error with the reference illuminant to be below
the threshold of what can be detected by a human being [42],
and the range between 2° and 3° is considered perceivable but
acceptable [50], [51].

In the same experimental configuration, we also compared
the inference speed of our CF and the original low-level frame-
work. All tests were executed on the same machine, equipped
with an Intel 17-7700 CPU at 3.60 GHz and 15.6 GB of RAM,
as well as an NVIDIA TITAN X (Pascal) GPU with 12 GB
of dedicated memory. The low-level framework relies on
optimized CPU computation and was run on MATLAB 2019a,
whereas the CF exploits GPU hardware acceleration, thanks
to its PyTorch-based implementation. For our experiments,
we consider both single image and batch processing to provide
a further layer of analysis. The results of this evaluation are
plotted in Fig. 2, concerning both absolute comparison and
relative speedup.

The batch-based CF is shown to outperform the low-level
framework for all methods under all tested values of o. It is
only suboptimal for the simpler (and less accurate) methods
WP, GW, and SoG when operating in single-image processing.
Overall, the increment of inference speed consequently ranges
from 2 x up to 30x. Another noteworthy observation is relative
to the difference in dependency on the method complexity:
once convolutional operations are involved, the speed of the
CF implementations of GGW, GE1, and GE2 is essentially
identical, whereas the inference time of the original MATLAB
implementation increases in pair with the derivative order.

A final comparison of inference speed is presented by
varying the image size, ranging from 100 pixels for the longest
side up to 2000 pixels per side, and setting the standard devi-
ation o to an intermediate value of 4. The results, which are
presented in Fig. 3, corroborate the observation on the stability
of the CF when varying the input image size, as opposed to
the exponential behavior displayed by the original low-level
framework implementation.

B. Global Illuminant Estimation Results

In this section, we compare the performance of the different
versions of the CF with algorithms in the state of the art
on the ColorChecker and the NUS-8 datasets. In particular,
we compare the following.

1) LCF Model A (LCF-A): the parameters and hyperparam-
eters are set to allow the replication of the GE2 method:
h=w =3 and o) = 1/ay = 2. More precisely, this
allows the replication of the truncated GE2 method [43]
with settings [n, p, o,t] = [n, p, o, 1].

2) ECF Model A (ECF-A): the parameters and hyperpa-
rameters are set to include the previous model and
extend it with a further intermediate convolutional layer:
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Fig. 4. Bubble plot of the median illuminant estimation error on the Col-

orChecker and NUS-8 datasets of instantiations of the CF (red circles), the
best supervised learning methods (colored circles), and instantiations of the
low-level framework (black stars). The light gray area shows the performance
limit on the two datasets obtained by algorithms not based on deep learning.

Pa=0,ho=wo=1, hyy=wy =1, sy = 1, and

op = 1/2 in the third block.
We also anticipate results of the ECF model B (ECF-B) based
on the selection of optimal hyperparameters as described in
Section VI-D. The results of the comparison on the Col-
orChecker dataset are reported in Table V in terms of average
and median angular error. The results of the methods in the
state of the art are taken from their respective papers and
may have used a different ground truth [47]. In order to
allow for an easier comparison, the methods are categorized
into four groups: unsupervised, parametric, supervised, and
instantiations of the CF. Contrary to the common mispractice
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TABLE V

GLOBAL ILLUMINANT ESTIMATION RESULTS: AVERAGE AND MEDIAN
ANGULAR ERRORS OBTAINED ON THE COLORCHECKER DATASET [45]

TABLE VI

RESULTS FOR GLOBAL ILLUMINANT ESTIMATION: AVERAGE AND
MEDIAN ANGULAR ERRORS OBTAINED ON THE NUS-8 DATASET [9]

Algorithm Avg  Med Algorithm Avg  Med
. WP [4] 5.71 3.46 . WP [4] 10.62  10.58
% GW [5] 4.72 3.57 ; GW [5] 4.14 3.20
E Buzzelli et al. (gl. norm) [52] 4.84 4.12 > Buzzelli et al. (gl. norm) [52] 4.88 4.17
2 Buzzelli et al. (ch. norm) [52] 548 4381 E‘_ Buzzelli et al. (ch. norm) [52] 432 3.37
é QU [53] 3.46 2.23 2 QU [53] 3.00 2.25
S SIIE [26] 277 193 5 SIIE [26] 205 150
C5 [29] 2.50 1.99 C5 [29] 1.77 1.37
SOG [n,p,0] = [0,4,0] [6] 421 2.50 SOG [6] 340 257
GGW [n,p,o] =[0,4,0.1] [7] 4.21 2.50 GGW [7] 321 2.38
§ GEl [n,p,o] =[1,2,0.9] [7] 403  2.60 2 GEl [7] 3.20 222
2 GE2[n,p,0] =[2,2,9][7] 423 269 2 GE2[7] 320 226
g Truncated GGW [n, p, o,t] = [0,4, 13, 1] [43] 4.17 2.49 § Truncated GE2 [43] 3.16 2.15
& BP[8] 398 261 £ BP[8] 317 241
Cheng et al. [9] 352 2.14 Cheng et al. [9] 292 204
Gray Pixel (edge) [54] 4.60 3.10 Gray Pixel (edge) [54] 3.15 2.20
GI [55] 3.07 1.87 GI [55] 291 1.97
Bayesian [45] 4.70 3.44 Bayesian [45] 3.67 273
Spatio-Spectral (ML) [56] 3.55 2.93 Spatio-Spectral (ML) [56] 3.11 2.49
Spatio-Spectral (GP) [56] 3.47 2.90 Spatio-Spectral (GP) [56] 2.96 233
Natural Image Statistics [10] 4.09 3.13 Natural Image Statistics [10] 371 2.60
Exemplar-based [57] 2.89 2.27 Cheng et al. [16] 236 1.59
Chakrabarti (Empirical) [58] 2.89 1.89 Color Dog [59] 283 1.77
Chakrabarti (End-to-end) [58] 2.56 1.67 Bianco et al. [19] 1.76
Cheng et al. [16] 242 165 FFCC (Model M) [60] 199 131
g;};ﬁ(r:oD;gal[SﬂQ 1 2.36 i'ii Oh and Kim [61] 241215
FFCC (Model M) [60] 178 0.96 3 ggf /i‘lim;e’“) 2[(6)2] 3?2 igg
FFCC (Model J) [60] 180 095 £ FC(AlexNey) [20] : :
. 5 DS-Net (HypNet+SelNet) [21] 2.24 1.46
g FFCC (Model ) [60] 223 145 S QU + Fine Tuning [53] 1.97 141
.2 Oh and Kim [61] 2.16 1.47 n . : ’
Z CCC (di Convolutional Mean [39] 2.25 1.59
5 (dist+ext) [62] 1.95 1.22 APAP (GW) [63 240 176
53 FC4(AlexNet) [20] 1.77 1.11 ( ) [63] : :
2 pot (AlexNeh* [20] 214 1.44 Corrected—Moment (19 edge moments) [64] 3.03 2.11
DS-Net (HypNet+SelNet) [21] 190  1.12 82"‘[2“% (no noise) [40] %‘ég :ig
QU + Fine Tuning [53] 291 1.98 IGTN (full) [28] 1.85 1'24
Convolutional Mean [39] 2.48 1.61 CLCC (w/ Full-Aug) [30] 1~84 1'31
APAP (GW) [63] 276 2.02 TLCC [31] g Lo 1a7
Corrected-Moment (19 edge moments) [64] 2.86 2.04 DALCC [32] 1' 0 1'0 6
One-net (no noise) [40] 2.47 1.86 y :
C4 27] 1.35 0.88 RCC_C [33] 2.62 1.43
IGTN (full) [28] 158 092 LCF-A (this work) 284 190
CLCC (w/ Full-Aug) [30] 144 092 g ECF (this work, replica of Conv. Mean [39]) 273 1.81
TLCC [31] 131 097 & ECF (this work, replica of One-net [40]) 2.48 1.79
RCC_C [33] 237 120 H ECF-A (this work) 2,65 180
LCC (v5) [34] 212 124 'S ECF-B (this work) 262 179
LCF-A (this work) 294 204 LS) LCF-A (th?s work, best run) 2.75 1.80
g ECF (this work, replica of Conv. Mean [39]) 257 171 ECF-A (this work, best run) 256 179
& ECF (this work, replica of One-net [40]) 229 154 ECE'B (this work, best run) 250 173
® ECF-A (this work) 274 192
'S ECF-B (this work) 2.68  1.87
S LCF-A (this work, best run) 2.86 1.94
' ECF-A (this work, best run) 268 185
ECF-B (this work, best run) 2.68 1.77

* models retrained according to the fair procedure [65]

used in the state of the art, for the CF instantiations we follow
the fair comparison procedure [65] and we report the average
result over five independent runs. Furthermore, we also report
the best result (the only one that is commonly reported). For
the sake of comparison, for some supervised methods we also
report the performance obtained when they are trained using
the fair comparison procedure [65].

First, we can observe that, on average, LCF-A is able
to improve the best average angular error obtained by the
methods included in the original low-level framework (i.e.,

among WP, GW, SOG, GGW, GE1, and GE2) by about 27.0%,
and the best median error by 18.4%. The improvement given
by ECF-A is respectively of about 32.0% and 23.2%, while the
improvement given by ECF-B is of about 33.5% and 25.2%.
The improvements are even higher if, instead of the average
result, we consider the best run.

The experimental results on the NUS-8 dataset (Table VI)
further confirm these results: on average, LCF-A is able
to improve the best average angular error obtained by the
methods included in the original low-level framework by about
11.3%, and the best median error by 14.4%. The improvement
given by ECF-A is respectively of about 17.2% and 18.9%,
while the improvement given by ECF-B is of about 18.1% and
19.4%. Also on this dataset the improvements are even higher
if instead of the average result we consider the best run.



TABLE VII

RESULTS FOR LOCAL ILLUMINANT ESTIMATION: AVERAGE AND MEDIAN
ANGULAR ERRORS OBTAINED ON THE TwO PARTS OF THE MIRF
DATASET [48]: LABORATORY (LEFT) AND REAL WORLD (RIGHT)

Algorithm Avg  Med Avg  Med
DN 10.6  10.5 8.8 8.9
GW [5] 32 2.9 5.2 4.2
WP [4] 7.8 7.6 6.8 5.6
SOG [n,p,o] =[0,1,1] [6] 32 2.9 5.2 4.2
GEl [n,p,0] =[1,1,1] [7] 3.1 2.8 5.3 3.9
GE2 [n,p,0] =[2,1,1] [7] 32 2.9 6.9 4.7
IEbv [48] 8.5 8.3 6.0 49
LSAC [68] 6.2 54 5.3 5.2
RETINEX [69] 6.3 54 5.2 5.2
LRS RETINEX [70] 5.8 4.8 5.6 4.0
Fusion Grad. Tree Boost. [71] 6.4 5.7 5.5 5.4
Fusion Rand. Forest Regr. [71] 5.0 3.9 4.1 3.5
MLS (with GE1) [72] 4.8 42 9.1 9.2
MIRF (with GE2) [48] 2.6 2.6 4.9 4.5
Bianco et al. [19] 2.2 2.0 3.1 3.0
CF-SV (GEl [n,p,0] =[1,1,1]) 24 2.1 5.3 3.5
LCF-A-SV (this work) 2.3 2.2 3.7 3.7
ECF-A-SV (this work) 2.3 2.1 34 24

Compared to supervised methods, on average the considered
instantiations of the CF produce results close to or better
than half of the methods in this category on both datasets,
even if they are not trained using the fair comparison proce-
dure [65]. It is worth noting that LCF-A and ECF-A have
a very low number of learnable parameters, i.e., 284 and
1022 respectively. As a reference, the top five supervised
methods reaching the lowest average angular errors are all
based on AlexNet or SqueezeNet architectures with a total
number of parameters ranging from 1.9 to 5.7 millions. The
convolutional mean method [39] is also replicated within
our framework, producing results comparable to the ones
officially reported by the authors (the slight variation can
be attributed to a different training configuration, including
loss function and data augmentation). In Fig. 4, we report
a bubble plot comparing the instantiations of the CF (red
circles) and the best supervised learning methods (colored
circles) in terms of median angular errors on the two datasets
considered, with the bubble size representing the number of
learnable parameters. As a further comparison we also report
the performance of instantiations of the original low-level
framework (black stars). We also represent with a dashed
line the performance limit on the two datasets obtained by
algorithms not based on deep learning. From the plot we
can see how the instantiations of the CF bridge the gap in
illuminant estimation accuracy between simple statistics-based
algorithms and recent deep learning-based algorithms while
keeping a very small model size. Qualitatively, besides the
total number of learnable parameters, one of the main differ-
ences between the tested instantiations of the CF and the neural
backbones used by the best supervised methods is the network
receptive field [66] and its growth across the different network
layers, as plotted in Fig. 5. We can notice how the backbones
used by the best supervised methods show a more gradual
growth of the receptive field, helping the network to build
a more detailed and hierarchical representation of features.
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Fig. 5. Receptive field growth across the different layers of the networks
considered. The receptive field is normalized with respect to the respective
input size.

| 1

3 :

(b)

(a)

\ # ,,
r
& 5 I

(@

(c)

Fig. 6. Visualization of the weights of GE2 [n, p,o] = [2,1,0.33] of
(a) Conv2D~-1 layer and (b) Conv2D-2 layer; weights learned by LCF-A
for (c) Conv2D-1 layer and (d) Conv2D-2 layer. The size of Conv2D~-1 is
3 x 3 x 3 x 9: for visualization purposes input channels are reported as rows,
while output channels are reported as as columns. The size of Conv2D-2 is
1 x 1 x 9 x 3: for better visualization it is reported as a 9 x 3 matrix.

Instead, the tested methods in the CF show a rapid growth of
the receptive field exploiting a global pooling of fine-grained
local features. We can also observe how the backbones of
the best supervised methods result in a bigger receptive field,
which has been observed to have a logarithmic relationship
with the performance on other computer vision tasks, e.g.,
classification [66].

1) Model Interpretation: In this section, we analyze what is
learned by a sample instance of the CF. Specifically, we inspect
the weights of layers Conv2D-1 and Conv2D-2 of LCF-A,
and we compare them with a CF replica of the GE2 algorithm
with settings [n, p,o] = [2,1,0.33]. The corresponding
weights are reported in Fig. 6. From the Conv2D-1 weights
it is possible to verify that, by definition, GE2 has several
kernels filled with zeros, and it performs the partial derivatives
in each color channel independently. LCF-A instead fully
exploits the possibility of performing cross-channel operations,
and in fact none of its kernels are completely filled with zeroes.
We can also observe how the kernels in most of the cases
represent wideband filters, resembling what can be achieved
with truncated filters [43]. A similar behavior can be observed
in the weights of the Conv2d-2 layer: GE2 is very sparse,
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(a)
Fig. 7.

Visualization of the activation maps of filters from the Conv2D-1 layer on an input image. (a) Input image considered (“Rainbow” by jakerome is

licensed under CC BY-ND 2.0). Activation maps, normalized in the [0, 1] range and visualized with a hot color map, of the Conv2D-1 layer of: (b) GE2

and (c) LCF-A.

and mixes with positive weights only the entries corresponding
to one color channel at a time. LCF-A instead is dense: for
each of the three outputs it contains both positive and negative
weights, and it exploits the information contained in all nine
input channels. In Fig. 7, we report the activation maps of the
Conv2d-1 layer for both GE2 and LCF-A on a composite of
multiple natural images. From the reported maps it is possible
to see how Conv2d-1 GE2, as expected, activates on image
edges. LCF-A instead performs more complex operations:
first, it is possible to see how the different filters perform a
form of color segmentation, activating more on specific tint
ranges. On top of this, some filters apply a form of blur (e.g.,
filters #3, #5, and #8, left-to-right, top-to-bottom), while others
identify edges (e.g., vertical edges for filter #1, horizontal
edges for filter #4, and both for filter #7), and others apply a
form of edge enhancement (e.g., filter #9).

A visual comparison of the error distributions can also
provide additional insights into the different behavior of
color constancy models. By computing the ratio between
ground truth and estimated illuminant, and projecting the
corresponding points in a chromaticity diagram such as the
angle-retaining chromaticity (ARC) [67], it is possible to
observe the bias of such models in terms of their deviation
from a perfect estimation (the diagram center). Fig. 8 shows
that the error distribution of GGW is considerably more spread
out than LCF-A. Both methods present a bias for natural lights,
which is manifested in the observations being distributed
along the blue-to-yellow diagonal. However, GGW is more
influenced by the greenish tint of the ColorChecker RAW
images, whereas LCF-A was trained to better disregard the
sensor transmittance bias. Considerations on the ECF-B model
are provided along with its introduction in Section VI-D.

C. Spatially Varying Illuminant Estimation Results

The performance of the spatially varying variants of the
proposed framework is reported in Table VII on the MIRF
dataset. To facilitate the comparison, the results are organized
in three blocks: global methods, spatially varying methods,
and instantiations of the CF.

60 60 60
GGW . LCF-A

ECF-B
40 40 40 i
20

0

-20

-40

-60

— 1 60—
-60 -40 -20 0 20 40 60 -60 -40 20 0 20 40 60

-60
-60 -40 20 0 20 40 60

ay ay ay

Fig. 8. Error distributions on the ColorChecker dataset for color constancy
methods GGW (left), LCF-A (center), and ECF-B (right), visualized in ARC
diagram. An ideal method would produce all observations in the center of the
diagram.

From the reported results we can observe that replicating
the GEI algorithm in our CF and extending it to work in
a spatially varying way (CF-SV) allows us to obtain results
very close to the best method in the state of the art on the
laboratory partition of the dataset. Taking GEI1 as reference,
the improvements in terms of average and median errors for
the spatially varying version are respectively 22.6% and 25.0%
on the laboratory partition, and 0.0% and 10.3% on the real-
world partition. The kernel size of the LpPoo12D layer is set
to h, = w, = 161 with stride s, = 35 for the laboratory
partition of the dataset, and h, = w, = 241 with stride
sp = 30 for the real-world partition of the dataset. These
hyperparameters were chosen by grid search using a twofold
cross-validation on each partition of the dataset, and are also
kept for the next experiments.

The spatially varying version of the LCF (i.e., LCF-A-SV)
obtains an improvement in terms of average and median errors
with respect to the standard GE1 of respectively 25.8% and
21.4% on the laboratory partition, and 30.2% and 5.1% on the
real-world partition.

As expected, the spatially varying version of the ECF (i.e.,
ECF-A-SV) is the one that obtains the highest improvement
on both dataset partitions. The gain in terms of average and
median errors with respect to the standard GEL1 is respectively
25.8% and 25.0% on the laboratory partition, and 35.8% and
38.5% on the real-world partition. In particular, we can observe
that the median error on the real-world partition is 20.0% lower
than the best method in the state of the art.
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Fig. 9. Hyperparameters sweep of the ECF. For each value of each hyperparameter, we report the average, the minimum and maximum values of the average,

and median angular error over five independent runs.

D. Hyperparameter Sweep

In this section, we perform an exploration of the hyperpa-
rameter space of the ECF. Starting from the model ECF-A,
we sweep each of the following hyperparameters indepen-
dently: loss function (angular error, L1, L2), number of output
channels in the first convolutional layer (c;), inner size (c;),
pool size (h,,, = Ww, = hyw, = hy, = hy, = hy,), input size
(H = W), Wlast (he, = we,), W (he, = we, = he, = we,),
weight decay, batch size, number of epochs, and dropout
probability (p,). The values of the power in Pow-1 and
Pow-2 are set &y = 1/ap = 2. For each hyperparameter value
we perform five different runs on the ColorChecker dataset
using the first fold as the test set and the second and third
ones as the training set. The result of this analysis is reported
in Fig. 9, where we plot the average, minimum and maximum
values over the runs of the average, and median angular error.

As a proof of concept, we run a further experiment selecting
the most promising values of the hyperparameters, i.e., L1 loss,
H=W=200,c1=9,¢ =27, he, =we, =h; =w, =5,
N =1, hml = Ww, = hm,- = hm,- = hmz = hmz = 3,
he, = we, = 2, no weight decay, batch size 8, 1000 epochs,
and no dropout (i.e., p; = 0). The instantiated model is
named ECF-B and has a total of 7115 learnable parameters;
its corresponding performance on the ColorChecker dataset
is reported in Table V. From the results it is possible to
notice that ECF-B is able to improve the performance of
ECF-A both in terms of average and median angular error.

A visual comparison among ECF-B, LCF-A, and GGW is
also presented in Fig. 8: the superior performance of ECF-B
is reflected in its error distribution being more compact and
close to the diagram center.

As can be observed, our replicas of convolutional mean [39]
and OneNet [40] achieve even better performance than our
hyperparameter sweep on the ColorChecker dataset (ECF-B).
This highlights how the space of possible solutions reachable
by the CF has not been completely covered by our greedy
optimization, suggesting the application of NAS for a more
thorough optimization. This also proves the elevated potential
of our framework to further improve upon its original baseline.

E. Performance Dependence on Training Set Size

To further analyze the performance of the proposed CF,
we trained LCF-A and ECF-A with reduced versions of the
training set of the ColorChecker dataset. The considered size
ratios range from 1 corresponding to the original training set
size (i.e., about 378 images, averaged over the three cross-
validation folds), down to 0.01 (i.e., about four images). For
each training set size, five different random selections (runs)
are performed: in Fig. 10, we plot the average and median
angular errors, averaged over the different runs. In the same
plot, we report the best average and median errors obtained
by instantiations of methods within the low-level framework,
i.e., GE1 and GGW respectively. From the reported plots it
is possible to see that LCF-A outperforms GGW in terms of
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on LCF, ECF, and ECF. Each point represents the result obtained by averaging
the predictions of the model snapshots obtained at the last epoch (i.e., 1000)
with those obtained at the previous epochs.

median error even if we reduce the training set to 50% of the
original size (i.e., about 189 images), and ECF-A outperforms
GGW even if we reduce the training set to 25% of the original
size (i.e., about 95 images). Considering the average error,
LCF-A and ECF-A outperform GE1 even reducing the training
set respectively to less than 20% and 15% of the original size
(i.e., about 76 and 57 images respectively).

F. Model Ensembling

It is known that ensembles of neural networks are more
robust and accurate than individual networks [73], but training
multiple deep networks for model ensembling is computation-
ally expensive. Inspired by snapshot ensembling [74], in this
section, we aim to understand if we can obtain a more robust

and accurate model by averaging the predictions of the models
saved at different training epochs.

We start from the model from the last training epoch (i.e.,
1000) and we average its estimations with those of the saved
models back to a given epoch. During training, snapshots are
created every 25 epochs and the results are averaged over
five independent runs. The results of this analysis for LCF-
A, LCF-A, and ECF-B are reported in Fig. 11. From the
reported plots it is possible to see that for all three considered
models, the angular error decreases when snapshot ensembling
is performed. The largest improvement in performance occurs
when the last five snapshots are used (corresponding to epochs
from 1000 back to 900), after which the improvement starts
to diminish. In particular, both the average and median errors
converge to the respective best run values reported in Table V.

VII. DISCUSSION AND LIMITATIONS

It is possible to highlight limitations of the proposed CF for

computational color constancy.

1) Hyperparameter Optimization: Extensive hyperparam-
eter sweeps did not yield configurations superior to
those manually determined by designers of established
networks like nonvolutional mean and OneNet.

2) Search Space Limitations: Preliminary experiments
revealed an upper bound in performance improvements
when replicating the repeatable convolutional block mul-
tiple times, indicating inherent constraints within our
current search space.

3) Architectural Support: The current framework does not
account for some architectural features, such as resid-
ual blocks, known for enhancing performance in deep
networks.

4) Input Diversity: Our framework only processes RGB
images as input. However, studies have shown that
incorporating chromaticity histograms [34] or edge
information [60] can enhance illuminant estimation per-
formance.

Addressing these areas will be crucial for advancing the
framework’s capabilities and broadening its application scope.

VIII. CONCLUSION

We presented a new unifying framework for color con-
stancy that exploits the convolution operation at its core: the
CF. In particular, the CF includes, improves, and extends a
framework for illuminant estimation based on low-level image
features.

The contribution is threefold: 1) the CF translates in terms
of efficiently implemented convolution operations a low-level
framework for illuminant estimation; 2) the CF is written so
that it is end-to-end learnable, exploiting non-Gaussian filter
kernels as well as cross-channel information, such as color
derivatives; and 3) the CF is designed in such a way that it
includes deeper convolutional architectures, and it can also
estimate multiple spatially varying illuminants. Experiments
are performed on standard datasets, and show that the CF
improves the illuminant estimation accuracy in terms of aver-
age angular error of the best methods included in the low-level



framework up to about 34% for single illuminant estimation
and 30% for multiple illuminant estimation, comparing favor-
ably to other more complex supervised methods. Furthermore,
the CF is able to outperform the best methods in the low-level
framework even when the number of available training images
is drastically reduced.

The proposed framework allows bridging the gap in illu-
minant estimation accuracy between simple statistics-based
algorithms and recent deep learning-based algorithms while
keeping a small model size and fast inference time, making it
a good candidate for real-time applications such as video color
constancy [75], [76]. The inference speedup gain for the most
computationally intensive method in the low-level framework
is up to about 30x in GPU using multibatch processing.

Due to the existing relationship among optimal filter ker-
nel size and image input size, as future work we plan to
investigate the use of a learnable resizing module, e.g., Shape
Adaptor [77] or DiffStride [78]. Although we have performed
a hyperparameter sweep analysis of our framework, we also
plan to perform an NAS within the proposed framework to
identify the best instantiations under different constraints, e.g.,
model size, inference speed, or illuminant estimation accuracy.
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