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Abstract—Littering presents a substantial environmental haz-
ard and impacts our well-being. The importance of automatic
litter detection lies in its ability to identify waste in the envi-
ronment, thereby enhancing the efficiency of subsequent waste
management operations. In order to achieve a comprehensive
and detailed survey of an area for litter detection, one of the
most effective approaches is to utilize the collective efforts of
citizen science. In this work we assess the performance of the
most efficient object detection methods aiming their use in the
type of devices typically employed in citizen science activities,
e.g. smartphones with low processing capabilities. Experiments
on the Trash Annotations in COntext (TACO) dataset show
that by exploiting our training procedure, the efficient models
that we tested are able to surpass the performance reached by
larger models in the state of the art. Moreover, experiments show
the among the efficient object detectors tested, the small model
variants offer the best trade off between model size and litter
detection performance.

Index Terms—Litter detection, efficient detector, YOLO, citi-
zen science

I. INTRODUCTION

Littering is a growing problem that afflicts many cities and
communities around the world. The improper disposal of waste
contributes to pollution, harms wildlife, and degrades natural
landscapes [1].

Automatic litter detection, thanks to its ability to identify
waste in various environments quickly and accurately, can
provide continuous monitoring, cover larger areas, and reduce
the reliance on human resources. These advantages make
automatic litter detection an essential component of modern
waste management strategies.

One of the most promising approaches to achieving compre-
hensive and detailed surveys for litter detection is through the
collective efforts of citizen science. Citizen science involves
the participation of volunteers from the general public in
scientific research activities, leveraging their collective power
to gather data over vast areas and time periods. With the
widespread availability of smartphones, citizen scientists can
now use their devices to capture images and report instances
of litter, providing valuable data for environmental monitoring.

Among the different existing datasets (e.g., [2]–[5]), the
TACO (Trash Annotations in Context) dataset [6] is one of the
best ones publicly available for waste detection, as it contains
realistic scenarios with a wide variety of waste thus permitting
the training of litter detection models able to operate on images
in the wild, i.e. with uncontrolled acquisition conditions.

Good performance have been reported on the TACO dataset,
but they are achieved by large models as for example YOLO-
v5x with a model size of more than 170 MB, making difficult
its deployment on edge devices with limited computational
resources as for example low- and mid-range smartphones.

In this paper, we propose to tackle the automatic litter
detection problem using the lightest object detection models
currently available in the state of the art: YOLO-v5 [7] and
YOLO-v8 [8] considering only the tiny and small variants.
The challenge is to train these models trying to obtain the
best possible performance on the TACO dataset, and compare
them with the results in the state of the art. The trained models
are then compressed with different quantization levels, as for
example half precision FP16 and INT8 quantization [9] to
investigate the trade-off between model size and detection
performance.

II. RELATED WORKS

Existing solutions in the state of the art differ both in terms
of architecture of the adopted litter detector model, in terms of
the dataset(s) used, and in terms of how the problem is casted,
i.e., detection or segmentation.

Proença and Simoes presented TACO (Trash Annotations in
Context) dataset [6], and adopted a Mask-RCNN to be used as
a baseline. Wang et al. [2] described the creation of the MJU-
WASTE dataset and tested several models with high number of
parameters and various backbones are used for segmentation
task (FCN-8s, PSPNet, CCNet and DeepLabv3). Patrizi et
al. [10] introduced a data-augmentation procedure to expand
existing datasets by cropping solid waste in images taken on
a uniform white background and superimposing it on more
realistic backgrounds. Córdova et al. [3] compared several
state-of-the-art CNN architectures (e.g., Faster RCNN, Mask-
RCNN, EfficientDet, RetinaNet, YOLO-v5s and YOLO-v5x)
on two litter image datasets. Majchrowska et al. [11] merged
collections from open-source datasets and proposed a two-
stage detector for litter localization (based on EfficientDet-
D2) and classification (based on EfficientNet-B2). Jalal et
al. [12] compared different YOLO-v5 variants (from YOLO-
v5s to YOLO-v5x) on a custom dataset. Das et al. [13] also
compared different YOLO-v5 variants (from YOLO-v5s to
YOLO-v5x), including a test time augmentation (TTA) step
to increase model inference accuracy at the cost of longer
inference time. Mandhati et al. [14] used images from TACO
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dataset together with the PlastOPol [3], UAV-DB [4] and
UAVVaste [5] datasets, on which they evaluated YOLO-v5l
and Faster R-CNN.

III. METHODS

In this work we experiment with the YOLO object detector.
The name YOLO, which stands for “You Only Look Once”,
is a state-of-the-art, real-time object detection algorithm, in-
troduced in 2015 [15]. YOLO belongs to the category of one-
stage detectors [16] and spatially separates bounding boxes
and associates probabilities to each of the detected object using
a single pass over the input image with a Convolutional Neural
Network (CNN). In this work we consider its most popular
versions, implemented in the Ultralytics library, i.e., YOLO-
v5 [7] and YOLO-v8 [8], focusing in particular on the tiny
and small models.

Both YOLO-v5 and YOLO-v8 use input images of size
640×640, while a variant of YOLO-v5, available in both tiny
(YOLO-v5n6u) and small (YOLO-v5s6u) model sizes, uses
input images of size 1280× 1280.

All the methods are trained with the same default hyperpa-
rameters for a total of 100 epochs, with automatic batch size
selection, and automatic optimizer selection. Three additional
image augmentations are added to the default ones: flipud that
flips the image upside down with the specified 0.5 probability,
degrees that rotates the image randomly within the specified
[−10, 10] degrees range, and copy paste that copies objects
from one image and pastes them onto another, resulting
particularly useful for increasing object instances and learning
object occlusion.

Once the training of a model is complete, as a further
optimization we tune the confidence threshold conf, which is
responsible of discarding the detections having an associated
confidence score lower than its value. In order to qualitatively
evaluate the effect of this tuning, we report in Figure 1
the detections returned by YOLO-v5s on a couple of TACO
images with the default confidence (i.e., conf = 0.001) and
with the confidence set at 0.5. From the examples reported it
is possible to notice how the default confidence value tends
to increase the number of false positives, while the increased
confidence maintains only the most precise detections.

IV. EXPERIMENTAL RESULTS

A. Dataset and metrics

In this paper we selected TACO dataset [6], that contains
1500 images with a total of 4784 annotations. TACO objects
are labeled into 60 categories that can be grouped in 28 super
categories, including the category Unlabeled waste for hard
to recognize or heavily occluded objects; some of these super
categories are over-represented (e.g., cigarettes and unlabeled
waste) while others are under-represented - there are 17 super
categories with less than 10 entries each. In the TACO paper
a 10-class subdivision is proposed, keeping 9 of the original
super categories and merging the remaining ones into a single
class called Other; neither this subdivision, however, does
result in a good balance of the dataset. To mitigate this

Fig. 1. Qualitative evaluation of the effect of the modification of the
confidence threshold from the default value conf = 0.001 (left) to a higher
value conf = 0.5 (right).

problem, in the TACO paper also a 1-class subdivision is
proposed, named TACO-1, which is the most frequently used
annotation where only one class is considered, i.e. the litter
class. Independently from the number of classes considered,
in general TACO is a very challenging dataset due to the
presence of very small objects (e.g., cigarette butts, bottle caps,
rope, strings, etc.) and transparent objects (e.g., bottles, glass,
etc.). In Figure 2 we report the histogram and the cumulative
distribution of the length of the diagonal of the bounding
boxes relative to the longest image side. From the plots it
can be noticed that the most frequent bins are the smallest
ones; in particular, the most frequent bin corresponds to a
bounding box having the longest side of about 12 pixels inside
an image scaled with the longest side equal to 640, confirming
the difficulty of the dataset.

The different methods are compared in terms of:

• mAP50, which measures the detection effectiveness in
terms of mean average precision (AP) at the intersection
over union (IoU) of 50%;

• mAP50-95, which measures the detection effectiveness in
terms of mean average precision considering the average
of 10 precision values computed changing the IoU value
from 50% to 95%, at steps of 5%.

• the efficiency in terms of model size in Megabytes (MB)
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Fig. 2. Histogram (left) and cumulative distribution (right) of the annotated
bounding boxes on the TACO dataset measured as the size of the diagonal of
the bounding box relative to the image long side.

and processing time in frames per second (FPS).

B. Experimental setup

Unfortunately TACO dataset does not came with a standard
partitioning into training, validation and test sets. The common
procedure is to randomly split the dataset into 80% for training
and 20% for testing. Then, some researchers [3] apply a 5-fold
cross validation procedure and select the model to be tested
as the one with the highest performance on the respective
validation fold. In order to have comparable results with the
state of the art, in this paper we split the dataset into 70%
for training, 10% for validation, and 20% for testing. Then
we select the model to be tested as the one with the highest
performance in terms of mAP50 on the validation set.

Concerning the confidence threshold tuning, the op-
timization of its value is carried out on the valida-
tion set by choosing the threshold value in the set
{0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95} the one
resulting in the highest mAP50.

The training is performed using Python-3.10.12 and Ultra-
lytics YOLOv8.2.7, and PyTorch-2.1.0 libraries using a single
NVIDIA GeForce GTX 1080 GPU with 8GB RAM.

C. Experimental results

The results of the tested models on the TACO-1 task are
reported in Table I and compared with the state of the art; the
performance are reported in terms of mAP50, mAP50-95 and
model size. Performance of the methods in the state of the
art are taken from the respective papers and unfortunately, not
all of them report the mAP50-95 performance. Concerning
our models, their performance is reported using the default
confidence and our tuned confidence. The same information
is also plotted in Figure 3.

From the reported results it is possible to notice how all the
methods benefited from the confidence tuning, with an average
improvement of 8.2% in mAP50 and 12.0% in mAP50-95,
with YOLO-v8 benefiting the most from this tuning.

Unsurprisingly, the best results among the nano models
is obtained by YOLO-v5n6u and among the small ones by
YOLO-v5s6u, that work on input images with size 1280 and
are able to better detect small objects. This is also confirmed
in Figure 5 where the detections of our models on a set of
images belonging to the test set are reported.

Fig. 3. Performance comparison on the TACO dataset on the TACO-I task
in terms of mAP50 and model size for approaches in the state of the art
(red circles), our models with default confidence (blue circles), and our
models with tuned confidence (green circle). For each group of models, the
corresponding performance Pareto front is reported with a dashed line having
the same color.

In comparison with the state of the art solutions, we can
see in Figure 3 that we can push the Pareto front of the
performance towards the bottom right corner, i.e. towards the
region of smaller models able to reach higher mAP50 values.
For example our best model, YOLO-v5s6u outperforms the
best method in the state of the art (YOLO-v5x) by 5.3% in
mAP50 being just 17.3% of its size. At the same time, YOLO-
v8n reaches the same mAP50 of the best method in the state
of the art being just 3.5% of its size. In Figure 4 we also
report a comparison in terms of mAP50, inference speed (in
FPS), and model size for our models tested in our hardware
configuration. Form the plot it is possible to see how all the
models are able to reach super real-time performance, with the
small models (YOLO-v5s and YOLO-v8s) offering the best
trade-off between inference speed and detection accuracy.

Since our final goal is to run the trained models on edge
devices, as final experiment we converted our PyTorch models
into TensorFlow Lite format with different quantizations and
measuring the final model size as well as its performance on
the TACO-1 task. The experimental results are reported in
Table II.

The different post-training quantization schemes here con-
sidered range from a simple conversion of the model into
TFLite file as full-precision floating point (float32.tflite) to
half-precision floating point (float16.tflite), from the quanti-
zation as 8-bit integers of only the weights of the model (inte-
ger quant.tflite) also exploiting Dynamic Range Quantization
(int8.tflite), to the quantization as 8-bit integers of both the
weights and the activations (full integer quant.tflite).

From the results reported in Table II we can observe how
if the inference has to be done on an edge TPU (e.g., Google
Coral) where a full integer quantization of both weights is
required, we can obtain a model that on average is about 50%
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TABLE I
LITTER DETECTION RESULTS ON TACO DATASET ON THE TACO-1 TASK. THE BEST RESULTS ARE REPORTED IN BOLD.

Train / test Default confidence Tuned confidence Improvement Size
Method dataset mAP50 mAP50-95 mAP50 mAP50-95 mAP50 mAP50-95 (MB)

RetinaNet [3] TACO 50.6 297.0
Faster R-CNN [3] TACO 51.1 580.0
Mask R-CNN [3] TACO 52.3 491.0
EfficientDet-D0 [3] TACO 32.7 17.0
EfficientDet-D2 [11] Extended TACO 56.8 40.4 35.0
EfficientDet-D5 [3] TACO 42.3 136.0
YOLO-v5s [3] TACO 54.7 15.0
YOLO-v5s [13] TACO 55.0 38.5 15.0†
YOLO-v5x [3] TACO 63.3 171.0
YOLO-v5x [13] TACO 61.4 47.6 171.0†

YOLO-v5n (this paper) TACO 52.2 34.3 61.4 47.2 +9.2 +12.9 5.0
YOLO-v5n6u (this paper) TACO 59.5 41.7 65.3 50.0 +5.8 +8.3 8.3
YOLO-v8n (this paper) TACO 51.8 34.7 63.3 48.4 +11.5 +13.7 6.0
YOLO-v5s (this paper) TACO 57.7 39.1 64.9 52.2 +7.2 +13.1 17.7
YOLO-v5s6u (this paper) TACO 62.0 40.7 68.6 49.8 +6.6 +9.1 29.6
YOLO-v8s (this paper) TACO 56.7 39.7 65.8 54.3 +9.1 +14.6 21.5

† not declared by the authors, taken from [3]

Fig. 4. Performance comparison on the TACO dataset on the TACO-I task in
terms of mAP50, inference speed and model size for our models with tuned
confidence.

of the original model with an average reduction in mAP50 of
about 6.8%. Instead, if the edge device has a GPU that can
be used for inference (e.g., ARM Mali, Qualcomm Adreno,
etc.), a FP16 quantized model permits to limit the average
degradation in mAP50 to just 0.4% at the cost of a model
having the same size as the original one.

V. CONCLUSION

In this work, we assessed the performance of the most
efficient object detection methods, specifically targeting their
use on devices typically employed in citizen science activities,
such as smartphones with low processing capabilities. Our
experiments on the Trash Annotations in Context (TACO)
dataset demonstrate that by exploiting our training procedure,
the efficient models we tested surpass the performance of the
best model in the state of the art, with an improvement up to
5.3% in terms of mAP50 with a model that is 17.3% of its size.

TABLE II
LITTER DETECTION RESULTS ON TACO DATASET ON THE TACO-1 TASK

FOR THE MODELS CONVERTED INTO TENSORFLOW LITE FORMAT.

Default conf. Tuned conf. Size
Model Format mAP50 mAP mAP50 mAP (MB)

Y
O

L
O

-v
5n

.pt 52.2 34.3 61.4 47.2 5.0
float32.tflite 51.7 33.7 60.9 46.8 9.8
float16.tflite 51.8 33.7 61.0 46.8 5.0
integer quant.tflite 44.3 27.1 56.7 41.8 2.5
full integer quant.tflite 43.8 27.0 57.0 41.7 2.5
int8.tflite 51.0 33.2 60.2 46.7 2.7

Y
O

L
O

-v
5n

6u

.pt 59.5 41.7 65.3 50.0 8.3
float32.tflite 59.4 41.3 65.1 49.3 16.7
float16.tflite 59.4 41.4 65.1 49.4 8.4
integer quant.tflite 50.0 30.3 56.3 37.0 4.3
full integer quant.tflite 49.2 29.8 55.6 36.6 4.3
int8.tflite 59.2 40.8 65.3 49.3 4.8

Y
O

L
O

-v
8n

.pt 51.8 34.7 63.3 48.4 6.0
float32.tflite 51.7 34.7 61.8 47.4 11.8
float16.tflite 51.7 34.7 61.8 47.4 5.9
integer quant.tflite 44.9 27.8 58.6 41.5 3.0
full integer quant.tflite 45.3 28.4 59.3 42.5 3.0
int8.tflite 51.8 34.1 63.0 47.8 3.1

Y
O

L
O

v5
s .pt 57.7 39.1 64.9 52.2 17.7

float32.tflite 57.7 38.8 64.9 51.5 35.1
float16.tflite 57.7 38.7 64.9 51.5 17.6
integer quant.tflite 49.2 29.4 60.4 42.3 8.9
full integer quant.tflite 49.8 29.9 61.9 43.4 8.9
int8.tflite 56.6 37.4 64.1 50.1 9.0

Y
O

L
O

-v
5s

6u

.pt 62.0 40.7 68.6 49.8 29.6
float32.tflite 62.2 40.6 68.3 49.5 59.2
float16.tflite 62.1 40.6 68.3 49.6 29.7
integer quant.tflite 46.3 26.2 54.6 35.6 14.9
full integer quant.tflite 45.2 25.9 53.3 35.4 14.9
int8.tflite 58.6 37.7 62.1 45.2 15.5

Y
O

L
O

-v
8s

.pt 56.7 39.7 65.8 54.3 21.5
float32.tflite 56.7 39.9 66.0 54.2 42.8
float16.tflite 56.5 39.9 66.0 54.2 21.4
integer quant.tflite 48.3 30.0 61.1 44.9 10.8
full integer quant.tflite 48.6 29.4 61.4 43.8 10.8
int8.tflite 54.6 36.8 62.5 50.3 10.9
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YOLO-v5n YOLO-v5n6u YOLO-v8n YOLO-v5s YOLO-v5s6u YOLO-v8s

Fig. 5. Litter detection results of our models on some sample images belonging to the test set of the TACO dataset. Detected litter is annotated with a red
bounding box reporting also its detection confidence.
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The experimental result also indicate that among the efficient
object detectors tested, the small model variants offer the best
trade-off between model size and litter detection performance.
We also showed that by exporting the trained models with
different quantization levels it is possible to further reduce the
model size at at about 52% of its original size at the cost of
an average reduction in detection performance of about 2% in
both mAP50 and mAP50-95.

These results underscore the potential of deploying
lightweight yet effective object detection models on resource-
constrained devices used by citizen scientists. This approach
not only supports better waste management practices by en-
abling more accurate and widespread litter detection but also
empowers communities to actively participate in environmen-
tal conservation efforts.
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