
applied
sciences

Article

General Purpose Optimization Library (GPOL): A Flexible and
Efficient Multi-Purpose Optimization Library in Python

Illya Bakurov 1,*, Marco Buzzelli 2 , Mauro Castelli 1 , Leonardo Vanneschi 1 and Raimondo Schettini 2

����������
�������

Citation: Bakurov, I.; Buzzelli, M.;

Castelli, M.; Vanneschi, L.; Schettini,

R. General Purpose Optimization

Library (GPOL): A Flexible and

Efficient Multi-Purpose Optimization

Library in Python. Appl. Sci. 2021, 11,

4774. https://doi.org/10.3390/

app11114774

Academic Editor: Peng-Yeng Yin

Received: 30 March 2021

Accepted: 15 May 2021

Published: 23 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Campus de Campolide, Nova Information Management School (NOVA IMS), Universidade NOVA de Lisboa,
1070-312 Lisboa, Portugal; mcastelli@novaims.unl.pt (M.C.); lvanneschi@novaims.unl.pt (L.V.)

2 Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca,
Viale Sarca, 336, 20126 Milano, Italy; marco.buzzelli@unimib.it (M.B.); raimondo.schettini@unimib.it (R.S.)

* Correspondence: ibakurov@novaims.unl.pt

Abstract: Several interesting libraries for optimization have been proposed. Some focus on individ-
ual optimization algorithms, or limited sets of them, and others focus on limited sets of problems.
Frequently, the implementation of one of them does not precisely follow the formal definition, and
they are difficult to personalize and compare. This makes it difficult to perform comparative studies
and propose novel approaches. In this paper, we propose to solve these issues with the General
Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that
covers a wide range of stochastic iterative search algorithms, through which flexible and modular
implementation can allow for solving many different problem types from the fields of continuous
and combinatorial optimization and supervised machine learning problem solving. Moreover, the
library supports full-batch and mini-batch learning and allows carrying out computations on a CPU
or GPU. The package is distributed under an MIT license. Source code, installation instructions,
demos and tutorials are publicly available in our code hosting platform (the reference is provided in
the Introduction).

Keywords: optimization; evolutionary computation; swarm intelligence; local search; continuous
optimization; combinatorial optimization; inductive programming; supervised machine learning

1. Introduction

Thinking about something (an object or an event) in abstract terms involves consider-
ing its central meaning or identifying overarching themes and fundamental issues that can
apply across contexts. On the other hand, thinking about something in concrete terms has
a narrower scope because peripheral details about the event become salient [1]. According
to [2], abstract thinking is less constraining than concrete as it involves generalization,
which allows for more freedom and flexibility. Larger freedom and flexibility, in turn,
impact the way people perceive the environment and their feelings of control over it.
Indeed, the authors of [3] found a positive relationship between an individual’s ability to
describe actions in more abstract terms and their internal loci of control. Concrete thinking,
in contrast, narrows an individual’s focus and ties one to the environmental details. Given
this rationale, we decided to practice the following mental exercise: to analyze, in abstract
terms, a specific topic—that is, the search for an optimal solution in a set of available
alternatives (also known as optimization). Specifically, we analyzed the iterative search
algorithms (from now on, called metaheuristics) and their applications for solving different
optimization problems.

Our main goal is to facilitate researchers accessing a wide variety of optimization
algorithms in Python by using a single command-line interface. With this approach, a
given problem can be addressed easily using different algorithms, requiring little to no
intervention from the user. This allows for an efficient assessment of different optimization
strategies to solve the same problem. The same philosophy has been successfully adopted

Appl. Sci. 2021, 11, 4774. https://doi.org/10.3390/app11114774 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1138-3345
https://orcid.org/0000-0002-8793-1451
https://orcid.org/0000-0001-7461-1451
https://www.mdpi.com/article/10.3390/app11114774?type=check_update&version=1
https://doi.org/10.3390/app11114774
https://doi.org/10.3390/app11114774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114774
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4774 2 of 34

in the MATLAB environment through the Optimize Live Editor Task [4], which leverages
the Optimization Toolbox and Global Optimization Toolbox; exposes a wide variety of
algorithms, ranging from pattern search to global search; and includes population-based
solutions, such as genetic algorithms, particle swarm optimization, and local-based solu-
tions (e.g., simulated annealing). Such a unified environment does not currently exist for
the Python programming language, in which independent specialized tools are commonly
used. For example, the SciPy [5] package offers a set of optimization tools to handle nonlin-
ear problems, linear programming, constrained and nonlinear least-squares, root finding,
and curve fitting. However, the only available population-based optimization algorithm is
differential evolution. The domain of population-based optimization in Python is mastered
by specific libraries, such as distributed evolutionary algorithms in Python (DEAP) [6]
and GPlearn [7] for evolutionary computation, with the latter being specific to the genetic
programming field, and PySwarms [8] for particle swarm optimization. Recent Python
packages have been developed specifically for multi-objective optimization problems, most
notably jMetalPy [9] and Platypus [10]. Therefore, the libraries’ foci are placed on providing
access to multi-objective algorithms, such as multi-objective evolutionary algorithm based
on decomposition (MOEA/D), non-dominated sorting genetic algorithm (NDSGA), and
their variants, including the related features of Pareto front approximation for trade-off
solutions and preference articulation. Domain-specific projects are also common in the
optimization community. One notable example is the Ārtap toolbox [11], whose initial
development was motivated by the design of an induction brazing process. The toolbox
contains various interfaces for modern optimization libraries, including integrated and ex-
ternal partial differential equation solvers, and was proven effective in numerical solution
by higher-order finite element methods (FEM). Google OR-Tools [12] is a C++ software suite
with wrappers for multiple languages, including Python, designed to address problems in
vehicle routing, flows, integer and linear programming, and constraint programming. Fol-
lowing the same unifying philosophy, it exposes several algorithms (including commercial
software) to a common interface. Due to the nature of the problems addressed, however,
no population-based optimization algorithms are currently implemented.

Generally speaking, many existing tools and libraries in Python are focused on specific
algorithm types or specific problem types. With GPOL, we aim to offer the scientific com-
munity and practitioners a more unified environment for optimization problem solving.
The first release of GPOL, presented in this document, implements random search, hill
climbing, simulated annealing, genetic algorithm, geometric semantic genetic program-
ming, differential evolution (represented through its numerous mutation strategies), and
particle swarm optimization (present in its synchronous and asynchronous variants). Mod-
ular implementations of random search, hill climbing, simulated annealing, and the genetic
algorithm allow one to adapt them to potentially any type of solution representation, as
such problem types. From this perspective, the random search unfolds into tree-based
random search. The hill climbing and simulated annealing can also be seen as tree-based
hill climbing and simulated annealing, respectively. In addition, if geometric semantic
mutation is used, these can be seen as semantic hill climbing and semantic simulated
annealing, respectively. The genetic algorithm unfolds into genetic programming, and
if geometric semantic operators are used, into geometric semantic genetic programming.
As noted from the abovementioned algorithms, in this release, we focus our attention on
stochastic iterative-search algorithms, in which the search procedure, and consequently,
the outcome involve some degree of randomness. Note that none of these algorithms
ensures that a globally optimal solution will be found in a finite amount of time; instead,
they can provide a sufficiently good solution to an optimization problem in a reasonable
amount of computational time. This intrinsic characteristic allows us to classify those
algorithms as metaheuristics. The metaheuristics have been shown to be a viable and often
superior alternative to deterministic methods, such as exhaustive branch and bound and
dynamic programming. Metaheuristics are particularly useful when solving complicated
problems, such as NP-hard problems, in which the computing time increases as an expo-

Appl. Sci. 2021, 11, 4774 3 of 34

nential function of the problem’s size, as they represent a better trade-off between solutions’
qualities and computing times. Moreover, they make relatively few assumptions about
the underlying optimization problems, and thus can be more suitable for solving many
real-world problems [13].

Constant evolution, improvements, and extensions to the underlying functionalities
are a few of the expected characteristics of any feasible and well-maintained optimization
library. From this perspective, we find it necessary to mention that, to foster the “gen-
eralization” advertised in the library’s name, the future versions of the library will also
accommodate deterministic iterative-search algorithms.

The library supports the application of algorithms on several different types of prob-
lems, including continuous and combinatorial problems, and supervised machine learning
(approached from the perspective of inductive programming and exploiting batch-training).
It offers a broad range of operators, including some of the most recent developments in the
scientific community, such as geometric semantic operators and evolutionary demes de-
speciation algorithm. Additionally, the library implements popular benchmark problems:
knapsack, traveling salesman, 13 popular synthetic mathematical functions, and a set of
built-in regression and classification datasets. All data structures are internally represented
with PyTorch’s tensors, which can exploit GPU parallelism. When solving some of the
problem types, for instance the supervised machine learning problems, the algorithm’s
learning can be either full-batch or mini-batch. These characteristics are particularly useful
when solving supervised machine learning problems with large amounts of data or when
a problem’ search space is very large. GPOL is also designed to be easily extended by its
users. Leveraging the library’s flexible design and modularity, researchers are, in fact, able
to implement their own classes of problems. By following some simple guidelines in terms
of methods and signatures, they can explore the problems’ search spaces with any of the
implemented or future metaheuristics. Similarly, the same modularity nature of the library
makes it possible for the users to expand on the current set of optimization algorithms, by
modifying existing operators or implementing completely new ones.

With this publication, we intend to provide a high-level overview of the functionalities
offered by GPOL, and clear and in-depth information on how to perform the optimization.
For these reasons, we support each covered topic with detailed code examples in Python
(provided in the Appendices A and B). For the sake of clarity, we use different combinations
of bold and italic text to distinguish between classes’ names, methods, functions, instance
variables and basic data-types. Specifically, we use: bold and italics for classes’ names;
bold for methods’ and functions’ names; italic for instance variables’ names and basic
data-types; finally, we use italic between quotes for dictionaries’ keys. Section 2 provides
overviews of the main types of optimization problems implemented in this library and
how they can be used. Section 3 exhibits the numerous metaheuristics implemented in the
library and shows how these can be applied in problem solving. Section 4 explains the
functioning of different algorithmic operators such as initialization procedures, selection
algorithms, an so forth. Section 5 describes the main data structures that store the candidate
solutions in the context of this library. Finally, the supplementary materials present a
study of algorithms’ accuracy on a broad range of problems. The GitLab’s repository
https://gitlab.com/ibakurov/general-purpose-optimization-library (accessed on 15 May
2021) contains the sourcecode, installation guidelines, additional demonstrations and
benchmark scripts, namely end-to-end integration tests in the folder “main” and detailed
tutorials in the folder “tutorials_jupyter” provided as Jupyter notebooks.

2. Optimization Problems

In this section, we define the concept of an optimization problem in a general enough
way to include the different types of problems presented in the continuation. Formally, an
optimization problem is a pair of objects (S, f), where S is the set of all possible solutions,
also known as the search space; and f : S→ R is a mapping between S and the set of real
numbers R, commonly known as the fitness function. An optimization problem can be

https://gitlab.com/ibakurov/general-purpose-optimization-library
https://gitlab.com/ibakurov/general-purpose-optimization-library

Appl. Sci. 2021, 11, 4774 4 of 34

either a minimization or a maximization problem, and it is completely characterized by the
respective instances [14,15]. Given the definition provided above, we have conceptualized
an abstract class, called Problem, with the following instance attributes:

• The search space S, materialized as a dictionary called sspace, holds problem-specific
information, such as a problem’s dimensionality and spatial bounds;

• The fitness function f , materialized as a function called ffunction, calculates the fitness
of the proposed solutions;

• An indication regarding optimization’s purpose whether it is a minimization or a
maximization materialized as a Boolean variable called min_.

Note that S is highly dependent on the problem type, which is reason why, within
this library, it is defined as a dictionary of varied (problem-specific) key-value pairs; when
describing different problems in detail, it will be detailed accordingly. Given that f is an
intrinsic characteristic (attribute) of a problem, the solution’s fitness evaluation is performed
by the respective instances of the problem by means of the following instance methods:

• evaluate_sol evaluates individual candidate solutions (objects of type Solution) and
is dedicated to single-point metaheuristics;

• evaluate_pop evaluates a set of candidate solutions (objects of type Population) and
is dedicated to population-based metaheuristics.

At this stage, it is necessary to justify the existence of two instance methods for
the candidate solution’s evaluation. As this library accommodates the single-point and
population-based metaheuristics, we decided to provide a possibility of efficiently eval-
uating a set of candidate solutions at a time. In this sense, evaluate_pop is designed to
encapsulate possible optimization procedures, such as parallel processing.

The optimization problems can be classified as “constrained” if they impose explicit
constraints on the search space S, regardless of any implicit constraint incorporated as
penalty term(s) in the fitness function. Assuming that the constraints of a problem are
intrinsic characteristics of S, the only object that becomes semantically capable of veri-
fying solution’s feasibility is, once again, the problem’s instance. The proposed library
supports constrained problems by attributing Problem with two instance methods that
verify solution’s feasibility.

• _is_feasible_sol verifies if an individual candidate solution (an object of type Solu-
tion) satisfies the constraints imposed by S (dedicated to single-point metaheuristics).
The method returns True if the solution is feasible; False otherwise.

• _is_feasible_pop verifies if a set of candidate solutions (an object of type Population)
satisfies the constraints imposed by S (dedicated to population-based metaheuristics).
The method returns a tensor of Boolean values, where True represents that a given
solution is feasible; False otherwise.

In the current release, the algorithms’ implementation promotes the convergence
without the use of a penalty function (which can be defined as a linear combination of the
objective function and some measure of the constraint violation). Instead, a “minimalistic
approach” is used: the unfeasible solutions automatically receive “very bad” fitness—the
highest possible value, in the case of a minimization problem; the smallest otherwise. In
this a way, such solutions will be implicitly vanished from the iterative search process as
they will receive little-to-none preference when compared to other candidate solutions
in the population, in the case of population-based algorithms, or in the neighborhood, in
the case of local-search. Since, in GPOL, algorithms’ initialization step always generates
feasible solution(s), the best-found solution will always be feasible (even in the extreme
and unlikely case when the search does not generate any other feasible solution that is
better). Additionally, what concerns the continuous problems, GPOL allows one to easily
reinitialize the outlying dimensions of the solutions in the feasible region. Similarly to
the work of R. Fletcher and S. Leyffer [16], the aim is to interfere as little as possible with
the search process but to do enough to give a bias towards convergence in the feasible
region. Nonetheless, three main differences with their work must be mentioned (although

Appl. Sci. 2021, 11, 4774 5 of 34

many more exist). First, those authors assume that the objective function and constraints
are twice continuously differentiable, whereas algorithms implemented in our library
do not require functions’ differentiability and can be applied on problems that are not
from the field of continuous optimization. Second, their work considers a sequential
quadratic programming (SQP) trust-region algorithm, whereas our library accommodates
population and neighborhood-based algorithms. Third, they propose considering the
objective function’s optimization and constraints’ satisfaction as separate aims; although
our approach might be similar in this sense, the main difference is the fact that they do so
by following the multi-objective optimization’s domination concept and the concept of a
filter. Other interesting approaches to accommodate constraints in the field of continuous
optimization can be found in [17].

Similarly to what was conceptualized with the solution’s evaluation, we have decided
to provide the possibility to verify efficiently the feasibility of a whole set of candidate
solutions at a call by creating _is_feasible_pop.

The library supports three main types of problems, all materialized as Problem sub-
classes: continuous, knapsack and traveling salesman (being these two special kinds of
combinatorial problems), and supervised machine learning (approached from the perspec-
tive of inductive programming). Each of the aforementioned default problems is described
in the following sections. Furthermore, examples of how to create them are also provided;
the examples of how to solve them can be found in Section 3.

2.1. Continuous Optimization Problems

Traditionally, optimization problems are grouped into two distinct natural categories:
those with continuous variables and those with discrete variables [18]. In this subsection,
we define the former, whereas the latter is defined in Section 2.2. When solving an instance
of a continuous optimization problem, one is generally interested in finding a set of real
numbers (possibly parameterizing a function). Continuous problems can be classified into
two categories: unconstrained and constrained. The unconstrained continuous problems
do not impose any explicit spatial constraints on the candidate solution’s validity. In
practice, however, the underlying data types are bound to the solution representations.
Contrarily, constrained problems do impose explicit spatial constraints on the solution’s
validity. Following the mathematical definition, the constraints can be either hard, as they
set explicit conditions for the solutions that are required to be satisfied, or soft, as they set
conditions that penalize the fitness function if they are not satisfied [18].

We have conceptualized a module called continuous that contains different problem
types from the continuous optimization field. In this release, the module contains one
class called Box: a simplistic variant of a constrained continuous problem in which the
parameters can take any real number within a given range of values, the box (also known
as hyperrectangle), which can be regular case when the bounds are the same for every
dimension or irregular when each dimension is allowed to have different bounds. The
search space of an instance of the continuous box problem consists of the following key-
value pairs.

• “constraints” is a tensor that holds the lower and the upper bounds for the search
space’s box. When the box is intended to be regular (i.e., all its dimensions are equally
sized), it tensor holds only two values, each representing the lower and the upper
bounds of each of the D dimensions of the problem, respectively. When the box is
intended to be irregular, the tensor is a 2 × D matrix. In such case, the first and the
second row represent the lower and the upper bounds for each of the D dimensions
of the problem, respectively.

• “n_dims” is an integer value representing the dimensionality (D) of S.

When solving hard-constrained continuous problems, some authors in the scientific
community bound the solutions to prevent the searching in infeasible regions [19]. The
bounding mechanism generally consists of a random re-initialization of the solution on
the outlying dimension. For this reason, besides the triplet sspace, ffunction, and min_,

Appl. Sci. 2021, 11, 4774 6 of 34

an instance of the box problem includes an additional instance-variable called bound,
which can optionally activate the solution bounding by assigning it the value True. When
bound is set to False, the outlying solution automatically receives the “worst” fitness score
(corresponding to the largest or the smallest value allowed by the underlying data type).

Similarly to some popular optimization libraries, such as [6,8], in this release, we
implement a wide set of popular continuous optimization test functions (13 in this release):
Ackley, Branin, Discus, Griewank, Hyper-ellipsoid, Kotanchek, Mexican Hat, Quartic,
Rastrigin, Rosenbrock, Salomon, Sphere, and Weierstrass. The formal definitions and
characteristics of the aforementioned functions can be found in [20,21].

Appendix A.1, in the appendix, provides an example of how to create an instance of
Box. Note that, in Section B, examples will be presented of how to solve this problem by
using different iterative search algorithms contained in the current release of the library.

2.2. Combinatorial Optimization Problems

When solving an instance of a combinatorial optimization problem, one is generally
interested in an object from a finite or, possibly, a countable infinite set that satisfies
certain conditions or constraints. Such an object can be an integer, a set, a permutation,
or a graph [15]. This section introduces two fundamental and popular problems in the
combinatorial optimization field that are implemented in the library’s current release: the
traveling salesman problem (TSP) and the knapsack problem.

2.2.1. The Traveling Salesman Problem

The TSP is a popular NP-hard combinatorial problem, of high importance in theoretical
and applied computer science and operations research. It inspired several other important
problems, such as vehicle routing and traveling purchaser [22]. In simple terms, the
traveling salesman must visit every city in a given region exactly once and then return to
the starting point. The problem proposes the following question: given the cost of travel
between all the cities, how should the itinerary be planned to minimize the total cost of the
entire tour.

We have conceptualized an eponymous module, designed to contain major variants
of the TSP. In this release, the module contains one class called TSP. The search space of an
instance of TSP consists of the following key-value pairs:

• “distances” is an n× n tensor of type torch.float, which represents the distance’s matrix
for the underlying problem. The matrix can be either symmetric or asymmetric. A
given row i in the matrix represents the set of distances between the “city” i, as being
the origin, and the n possible destinations (including i itself).

• “origin” is an integer value representing the origin (i.e., the point from where the
“traveling salesman” departs).

Appendix A.2, in the appendix, provides an example of how to create an instance
of TSP, whereas Appendix B demonstrates how to solve this problem by using different
iterative search algorithms.

2.2.2. Knapsack

In a knapsack problem, one is given a set of items, each associated with a given
value and size (such as the weight and/or volume), and a “knapsack” with a maximum
capacity; solving an instance of a knapsack problem implies to “pack” a subset of items
into the knapsack, so that the items’ total size does not exceed the knapsack’s capacity,
and their total value is maximized. If the total size of the items exceeds the capacity, a
solution is considered unfeasible. There is a wide range of knapsack-based problems, many
of which are NP-hard, and large instances of such problems can be approached only by
using heuristic algorithms [23]. In this release, the library contains two variants: the “0–1”
and the “bounded” knapsack problems, implemented in the module knapsack as classes
Knapsack01 and KnapsackBounded, respectively. In the first, each item i can be included
in the solution only once; as such, the solutions are often represented as binary vectors.

Appl. Sci. 2021, 11, 4774 7 of 34

In the second, i can be included in the solution ubi times, at most; as such, the solutions
are often represented as integer vectors. Concerning the latter, in our implementation, we
also allow the user to define not only the upper bound for i (ubi), but also the lower bound
(lbi). That is, we allow the user to specify the minimum and the maximum number of
times an item i can be present in a candidate solution. The search space of an instance of
Knapsack01 problem, a subclass of Problem, consists of the following key-value pairs:

• “capacity” as the maximum capacity of the “knapsack”;
• “n_dims” as the number of items in S;
• “weights” as the collection of items’ weights defined as a vector of type torch.float;
• “values” as the collection of items’ values defined as a vector of type torch.float.

The search space of an instance of KnapsackBounded problem, a subclass of Knap-
sack01, also comprises the key “bounds” which holds a 2 × n tensor representing the
minimum and the maximum number of copies allowed for each of the n items in S.

Appendix A.3, in the appendix, provides an example of how to create an instance of
Knapsack01 and KnapsackBounded, whereas Appendix B demonstrates how to solve this
problem type.

2.3. Supervised Machine Learning Problems (Approached from the Perspective of
Inductive Programming)

Inductive program synthesis (also known as inductive programming) is a subfield in
program synthesis that studies program generation from incomplete information, namely,
from the examples for the desired input/output behavior of the program [24,25]. Genetic
programming (GP) is one of the numerous approaches for the inductive synthesis charac-
terized by performing the search in the space of syntactically correct programs of a given
programming language [25].

In the context of supervised machine learning (SML) problem solving, one can define
the task of a GP algorithm as the program/function induction from input/output-examples
that identifies the mapping f : S→ R in the best possible way, generally measured through
solution’s generalization ability on previously unseen data.

Given the definitions provided above and to support an automatic program’s in-
duction, we conceptualized a module called inductive_programming which in this release
implements two different problems. One is called SML, a subclass of Problem, and aims to
support the SML problem solving, more specifically the symbolic regression and binary
classification, by means of standard GP and its local-search variants. The second, called
SMLGS, aims to provide an efficient support for the same tasks addressed instead by
means of geometric semantic GP (GSGP), following the implementation proposed in [26].
The major difference between the two is that the latter does not require storing the GP trees
in memory, as it relies on memoization techniques.

The search space for an instance of SML must contain the problem’s dimensionality (in
the context of SML this corresponds to the number of input features), and those GP-specific
parameters that characterize and delimit S. These can be the set of functions and constants
from which programs are built, the maximum bound for the trees’ initial depth and their
growth during the search (which can be seen as a constraint to solutions’ validity), and so
forth. The following list of key-value pairs fully describes the search space for an instance
of SML:

• “n_dims” is the number of input features (also known as input dimensions) in the
underlying SML problem;

• “function_set” is the set of primitive functions;
• “constant_set” is the set of constants to draw terminals from;
• “p_constants” is the probability of generating a constant when sampling a terminal;
• “max_init_depth” is the trees’ maximum depth during the initialization;
• “max_depth” is the trees’ maximum depth during the evolution;
• “n_batches” is number of batches to use when evaluating solutions (more than one can

be used).

Appl. Sci. 2021, 11, 4774 8 of 34

Besides the traditional triplet sspace, ffunction, and min_ the constructor of SML ad-
ditionally receives two objects of type torch.utils.data.DataLoader, called dl_train and
dl_test, which represent training and test (also known as unseen) data, respectively. In the
proposed library, we decided to rely upon PyTorch’s data manipulation facilities, such as
torch.utils.data.Dataset and torch.utils.data.DataLoader [27], for the following reasons:
simplicity and flexibility of the interface, randomized access of the data by batches, and the
framework’s popularity (as such, familiarity with its features). Moreover, the constructor
of SML receives another parameter, called n_jobs, which specifies the number of jobs to run
in parallel when executing trees (we rely on joblib for parallel computing [28]).

The search space for an instance of SMLGS does not vary from the one of SML except
in the fact that it does not take “max_depth” as the growth of the individuals in GSGP is an
inevitable and necessary consequence of semantic operators’ application; thus, restricting
the depth of the individuals is unnecessary. The constructor of SMLGS is significantly
different from the SML in the sense that data are not manipulated through PyTorch’s
data-loaders; instead, it uses the input and the target tensors (X and y) directly (similar
to what is done in scikit-learn [29]). This difference was motivated by implementation
guidelines in [26]. The module gpol.utils.datasets provides a set of built-in regression and
classification datasets.

Appendix A.4, in the appendix, provides an example of how to create an instance of
SML and SMLGS, whereas Appendix B demonstrates how to solve this problem type.

3. Iterative Search Algorithms

To solve a problem’s instance, one needs to define an optimization algorithm. This
library focuses on the iterative search algorithms (also known as metaheuristics), and the
current release comprises their stochastic branch.

One of the main ideas of the proposed library is to maximally separate the algorithms’
implementation from the problems’ details. The highest manifestation of this aim translates
into the possibility to apply a given algorithm for any kind of problem, even if solutions’
generalization ability is a concern. We were able to achieve this characteristic thanks to
an abstraction of the metaheuristics from the solutions’ representation and search-related
operators, such as initializers, selectors, mutators and crossovers. The block diagram
presented in Figure 1 reflects a high-level overview of how the algorithms relate to the
problems’ instances and operators.

Iterative Search

Algorithms
(a.k.a. metaheuristics)

Operators
(initializers, selectors,

mutators, crossovers, etc.)

Problems’

Instances
(PIs)

Solves

Uses problem-specific

Figure 1. A high-level overview of algorithms’, problems’ and operators’ relationships through a
block-diagram.

Based on the number of candidate solutions they handle at each step, the metaheuris-
tics can be categorized into Single-Point (SP) and Population-Based (PB) approaches. The

Appl. Sci. 2021, 11, 4774 9 of 34

search procedure in the SP metaheuristics is generally guided by the information that is
provided by a single candidate solution from S, usually the best-so-far solution, that is
gradually evolved in a well-defined manner in hope to find the global optimum. The Hill
Climbing and Simulated Annealing, which will be discussed in Section 3.2), are examples
of SP metaheuristics. Contrarily, the search procedure in PB metaheuristics is generally
guided by the information shared by a set of candidate solutions and the exploitation of
the collective behavior in different ways. In abstract terms, one can say that every PB
metaheuristics shares, at least, the following two features: an object representing the set of
simultaneously exploited solutions (i.e., the population), and a procedure to “move” them
across S [30].

In abstract terms, a metaheuristic starts with a point in S and searches, iteration by
iteration, for the best possible solution in the set of candidate solutions, according to some
criterion. Usually, the stopping criterion is the maximum number of iterations specified
by the user [30]. Following this rationale, we have conceptualized an abstract class called
SearchAlgorithm, characterized by the following instance attributes:

• pi is an instance of an optimization problem (i.e., what to solve/optimize);
• best_sol is the best solution found by the search procedure;
• initializer is a procedure to generate the initial point in S; and
• device is the specification of the processing device (i.e., whether to perform computa-

tions on the CPU or the GPU).

Theoretically, to solve a problem’s instance, the search procedure of an iterative
metaheuristic comprises two main steps:

• Initializing the search at a given point in S.
• Solving a problem’s instance by iteratively searching, throughout S, for the best

possible solution according to the criteria specified in the instance. Traditionally,
the termination condition for an iterative metaheuristic is the maximum number
of iterations, and it constitutes the default stopping criterion implemented in this
library (although the user can specify a convergence criterion, and the search can be
automatically stopped before completing all the iterations).

The two aforementioned steps are materialized as abstract methods _initialize and
solve. Every implemented algorithm in the scope of this library is an instance of SearchAl-
gorithm, meaning that it must implement those two methods. Note that the _initialize is
called within the solve, whereas the latter is to be invoked by the main script. The signature
for the solve does not vary among different iterative metaheuristics and is made of the
following parameters:

• n_iter is the number of iterations to execute a metaheuristic (functions as the default
stopping criterion).

• tol is the minimum required fitness improvement for n_iter_tol consecutive iterations to
continue the search. When the fitness the current best solution is not improving by at
least tol for n_iter_tol consecutive iterations, the search will be automatically interrupted.

• n_iter_tol is the maximum number of iterations to not meet tol improvement.
• start_at is the initial starting point in S (i.e., the user can explicitly provide the meta-

heuristic a starting point in S).
• test_elite is an indication whether to evaluate the best-so-far solution on the test

partition, if such exists. This regard only those problem types which operate upon
training and test cases, this allow one to assess solutions’ generalization ability.

• verbose is the verbosity level of the search loop.
• log is the detail level of the log file (if such exists).

Being the root of all the metaheuristics, the SearchAlgorithm class implements the
following utility methods:

• _get_best compares two candidate solutions based on their fitness values and returns
the best;

Appl. Sci. 2021, 11, 4774 10 of 34

• _get_worst compares two candidate solutions based on their fitness values and returns
the worst.

Furthermore, the class defines two abstract methods that have to be overridden by the
respective subclasses:

• _create_log_event is designed to create a log-event for writing search-related data on
the log-file;

• _verbose_reporter is designed to report search-related information on the console.

Figure 2 illustrates the UML diagram of the SearchAlgorithm class and its subclasses,
which are described in the rest of this section.

Figure 2. UML diagram of the algorithm class SearchAlgorithm and relative subclasses, as imple-
mented in GPOL.

3.1. Random Search

The random search (RS) can be seen as the first rudimentary stochastic metaheuristic
for problem solving. Its strategy, far away from being “intelligent”, consists of randomly
sampling S for a given number of iterations. In the scientific community, RS is frequently
used in the benchmarks as the baseline during the algorithms’ performance assessment.
Following this rationale, one can conceptualize the RS at the root of the hierarchy of “intelli-
gent” metaheuristics; from this perspective, it is meaningful to assume that metaheuristics

Appl. Sci. 2021, 11, 4774 11 of 34

donated with “intelligence”, like Simulated Annealing or Genetic Algorithms, might be
seen as improvements upon RS, thereby branching from it.

Following this rationale, we have conceptualized a class called RandomSearch, a
subclass of SearchAlgorithm, characterized by the following instance attributes:

• pi, best_sol, initializer, and device, which are inherited from the SearchAlgorithm;
• seed which is a random state for the pseudo-random numbers generation (an integer value).

As a subclass of the SearchAlgorithm, the RandomSearch implements the methods
_initialize, solve, _create_log_event and _verbose_reporter. Moreover, it implements
_get_random_sol, a method that (1) generates a random representation of a candidate
solution by means of the initializer, (2) creates an instance of type Solution, (3) evaluates an
instance’s representation, and (4) returns the evaluated object.

Appendix B.1 demonstrates how to create an instance of RandomSearch and apply it
in different problem solving.

3.2. Local Search

The local search (LS) algorithms can be seen among the first intelligent search strategies
that improve the functioning of the RS. They rely upon the concept of neighborhood which
is explored at each iteration by sampling from S a limited number of neighbors of the best-
so-far solution. Usually, the LS algorithms are divided in two branches. In the first branch,
called hill climbing (HC), or hill descent for the minimization problems, the best-so-far
solution is replaced by its neighbor when the latter is at least as good as the former. The
second branch, called simulated annealing (SA), extends HC by formulating a non-negative
probability of replacing the best-so-far solution by its neighbor when the latter is worse.
Traditionally, such a probability is small and time-decreasing. The strategy adopted by SA
is especially useful when the search is prematurely stagnated at a locally sub-optimal point
in S.

Given the definitions provided above, we have conceptualized a module called lo-
cal_search, which contains different LS meta-heuristics. In this release, we implement the
HC and SA algorithms. The former is materialized as a subclass of the RandomSearch,
called HillClimbing, whereas the latter is materialized as a subclass of HillClimbing, called
SimulatedAnnealing.

To solve a given problem’s instance, a LS algorithm mainly requires problem-specific
initialization and neighborhood functions. For example, the candidate solutions for the
0-1 Knapsack problem are, technically, fixed length vectors of Boolean values; as such,
a neighbor should also be an equal vector of the same data type, whose values are in
a “neighboring” arrangement. Given that the initialization, and in the case of LS, the
neighbors’ generation functions are provided at the moment of algorithms’ instantiating,
one can create an instance of RandomSearch, HillClimbing, or SimulatedAnnealing to
solve potentially any kind of problem, whether it is continuous, combinatorial, or inductive
program synthesis for SLM problem solving. The only two things one has to take in
consideration are the correct specification of the search space and the operators for a given
problem type.

3.2.1. Hill Climbing (HC)

HC is a popular meta-heuristics in the field of optimization which has been success-
fully applied in several domains, including continuous and combinatorial optimization [31].
Moreover, there is evidence of the successful adaptation of HC in the context of inductive-
programming synthesis for neuroevolution [32]. In general terms, HC searches for the best
possible solutions by iteratively sampling a set of neighbors of the current best solution,
using the neighborhood function, and choosing the one with the best fitness. Within
this library, the HC algorithm is materialized through the class HillClimbing, subclass of
RandomSearch and it is characterized by the following instance attributes:

• pi, initializer, best_sol, seed, and device are the instance attributes inherited
from RandomSearch;

Appl. Sci. 2021, 11, 4774 12 of 34

• nh_size is the neighborhood’s size;
• nh_function is a procedure to generate nh_size neighbours of a given solution (the

neighbour-generation function).

The main distinctive characteristics of the HillClimbing class can be expressed through
the logic that guides the search-procedure, which is implemented in the overridden solve
method. Additionally, the class implements a private method, called _get_best_nh, which
returns the best neighbor from a given neighborhood. Figure 3 represents the search
procedure of a HC algorithm that is mirrored in the solve method.

Hill Climbing:

• randomly generate one (feasible) initial solution i in S;
• repeat until satisfaction of stopping criterion (e.g., number of iterations):

– generate nh_size neighbors of i;
– select the best solution j from the neighborhood, according to fitness function f ;
– if the fitness of solution j is better or equal than the fitness of solution i then set i := j;

• return i

Figure 3. Procedural steps of hill climbing.

3.2.2. Simulated Annealing (SA)

The HC algorithm suffers from several limitations, namely, it frequently becomes
stuck at the local optima. To overcome this problem, the scientific community proposed
several approaches, among them the SA algorithm that also uses the notion of the neigh-
borhood [14]. One thing that distinguishes SA from HC is an explicit ability to escape from
the local optima. This ability was conceived by simulating, in the computer, a well-known
phenomenon in metallurgy called annealing (which is why the algorithm is called simu-
lated annealing). Following what happens in metallurgy, in SA, the transition from the
current state (the best-so-far candidate solution i), to a candidate new state (a neighbor of
i), can happen for two reasons: either because the candidate state is better, or following the
outcome of an acceptance probability function—a function that probabilistically accepts
a transition toward the new candidate state, even if it is worse than the current state, de-
pending on the the states’ energy (fitness) and a global (time-decreasing) parameter called
the temperature (t) [14]. From this perspective, SA can be seen as an attempt to improve
upon HC by adding more “intelligence” in the search strategy. Within this library, the SA
algorithm is materialized through the class SimulatedAnnealing, subclass of HillClimbing,
and it is characterized by the following instance attributes:

• pi, initializer, nh_function, nh_size, best_sol, seed, and device are instance attributes
inherited from HillClimbing;

• control is the control parameter (also known as temperature);
• update_rate: rate of control’s decrease over the iterations.

The Figure 4 provides the main steps of SA (for a maximization problem), that are
mirrored in the solve method of SimulatedAnnealing class.

Simulated Annealing:

• randomly generate one (feasible) initial solution i in S;
• repeat until satisfaction of stopping criterion (e.g., number of iterations):

– repeat Lk times (where Lk stands for the number of transitions or neighbors):

* by means of a neighborhood function, select a neighbor j ∈ N(i), where N(i) is the neighborhood of i;
* if f (j) ≥ f (i), set i := j, where f is the fitness function;

* else if e−
f (i)− f (j)

t > r, set i := j, where r ∼ U(0, 1];

– update the temperature parameter t
(traditionally, t = t ∗ urate, where urate is the temperature’s update rate).

• return i;

Figure 4. Procedural steps of simulated annealing.

Appl. Sci. 2021, 11, 4774 13 of 34

Appendix B.2 demonstrates how to create an instance of SimulatedAnnealing and
apply it in different problem solving.

3.3. Population-Based Algorithms

Given the fact we are aiming at a library focused on SP and PB metaheuristics, we have
conceptualized an abstract class called PopulationBased, a subclass of RandomSearch, as it
improves the latter by means of “collective intelligence.” The class PopulationBased is the
root of all the PB-metaheuristics and is characterized by the following instance attributes:

• pi, initializer, best_sol, seed, and device are inherited from the RandomSearch;
• pop_size is the number of candidate solutions to exploit simultaneously at each step

(i.e., the population’s size);
• pop is an object of typePopulation representing the set of simultaneously exploited

candidate solutions (i.e., the population);
• mutator is a procedure to “move” the candidate solutions across S.

The current release of GPOL presents five PB metaheuristics: genetic algorithm (GA),
genetic programming (GP), geometric semantic genetic programming (GSGP), differen-
tial evolution (DE) and particle swarm optimization (PSO). The latter is present in two
variants that differ in the precedence candidate solutions (called particles) update their
positions: synchronous-PSO (SPSO) and asynchronous-PSO (APSO). The objective of the
following sections is to describe these algorithms and show how they can be used to solve
different problems.

3.3.1. Genetic Algorithms (GAs)

Genetic algorithms (GAs) is a metaheuristic introduced by J. Holland [33], which was
strongly inspired by Darwin’s theory of evolution by means of natural selection [34]. Con-
ceptually, the algorithm starts with a random-like population of candidate solutions (called
chromosomes). Then, by mimicking the natural selection and genetically-inspired variation
operators, such as the crossover and the mutation, the algorithm breeds a population of the
next-generation candidate solutions (called the offspring population, P′), which replaces the
previous population (also known as the parent population, P). This procedure is iterated
until reaching some stopping criteria, such as a maximum number of iterations (also called
generations) [35].

Following the above-presented rationale, we have conceptualized a class called Geneti-
cAlgorithm, subclass of PopulationBased, characterized by the following instance attributes:

• pi, initializer, best_sol, pop_size, pop, mutator, seed, and device are inherited
from PopulationBased;

• selector is the selection operator;
• crossover is the crossover variation operator;
• p_m is the probability of applying mutation variation operator;
• p_c is the probability of applying crossover variation operator;
• elitism is a flag which activates elitism during the evolutionary process; and
• reproduction is a flag that states whether the crossover and the mutation can be applied

on the same individual (case when reproduction is set to True). If reproduction is set
to False, then either crossover or mutation will be applied (this resembles a GP-like
search procedure).

Figure 5 presents the main steps of the solve method in the GeneticAlgorithm class.
Moreover, the class implements a private method, called _elite_replacement, which di-
rectly replaces P with P′ if the elite is the best offspring; otherwise, when the elite is the
best parent, P is replaced with P′ and the elite is transferred to P′ (by replacing a randomly
selected offspring).

Appl. Sci. 2021, 11, 4774 14 of 34

Genetic Algorithm

• create a random initial population P of size n;
• repeat until satisfaction of stopping criterion (e.g., number of iterations/generations):

– calculate the fitness ∀ individual i in P;
– create an empty population P′—the population offspring;
– repeat until P′ contains n individuals:

* chose the main genetic operator: crossover, with probability pc or reproduction with probability (1− pc);
* select two individuals—the parents—by means of a selection algorithm;
* apply the selected main genetic operator to the individuals selected in the previous step;
* apply the mutation operator on the resulting offspring with probability p_m
* insert offspring individuals into P′;

– replace P with P′.
• return the best individual in P;

Figure 5. Procedural steps of the genetic algorithm.

3.3.2. Genetic Programming (GP)

Genetic programming (GP) is a PB metaheuristic, proposed and popularized by
J. Koza [36], which extends GAs to allow the exploration of the space of computer pro-
grams. Similarly to other evolutionary algorithms (EAs), GP evolves a set of candidate
solutions (the population) by mimicking the basic principles of Darwinian evolution. The
evolutionary process involves fitness-based selection of the candidate solutions and their
variation by means of genetically-inspired operators (such as the crossover and the mu-
tation) [36,37]. If abstracted from some implementation details, GP can be seen as GA, in
which initialization and variation operators were specifically adjusted to work upon tree-
based representations of the solutions (this idea was inspired by the LISP programming
language, in which programs and data structures are represented as trees). Concretely,
programs are defined using two sets: a set of primitive functions, which appear as the
internal nodes of the trees, and a set of terminals, which represent the leaves of the trees.
In the context of SML problem solving, the trees represent mathematical expressions in
the so-called Polish prefix notation, in which the operators (primitive functions) precede
their operands (terminals). Given that the initialization, selection, and variation operators
are provided as constructor’s parameters, one can create an instance of GeneticAlgorithm
to solve potentially any kind of problem, whether it is of continuous, combinatorial, or
inductive program synthesis nature. The only two things one has to take into consideration
are (1) the correct specification of the problem-specific S and (2) the operators. Following
this perspective, by creating an instance of the class GeneticAlgorithm with, for example,
ramped half-and-half (RHH) initialization, tournament selection, swap crossover and
sub-tree mutation, all of them implemented in this library, one obtains a standard GP
algorithm. Recall that a similar flexible behaviour is present in the branch of LS algorithms.
By providing HC or SA with, for example, grow initialization and sub-tree mutation, one
obtains a LS-based program induction algorithm.

Appendix B.3 demonstrates how to create an instance of GeneticAlgorithm and apply
it in different problem solving.

3.3.3. Geometric Semantic Genetic Programming (GSGP)

Geometric semantic genetic programming (GSGP) is a variant of GP in which the so-
called geometric semantic operators (GSOs) replace the standard crossover and mutation
operators [38].

GSOs gained popularity in the GP community [39–43] because of their geometric
property of inducing a unimodal error surface (characterized by the absence of locally
optimal solutions) for any SML problem, which quantifies the quality of candidate solutions
by means of a distance metric between the target and their output values (also known as
semantics). The formal proof of this property can be found in [38,44].

Appl. Sci. 2021, 11, 4774 15 of 34

A geometric semantic crossover (GSC) generates, as the unique offspring of parents
T1, T2 : Rn → R, the expression: TXO = (T1 · TR) + ((1− TR) · T2), where TR is a random
real function whose output values range in the interval [0, 1]. Moraglio and coauthors [38]
show that GSC corresponds to geometric crossover in the semantic space (i.e., the point
representing the offspring stands on the segment joining the points representing the
parents). Consequently, the GSC inherits the key property of geometric crossover: the
offspring is never worse than the worst of the parents.

A geometric semantic mutation (GSM) returns, as the result of the mutation of an
individual T : Rn → R, the expression: TM = T + ms · (TR1 − TR2), where TR1 and TR2 are
random real functions with a codomain in [0, 1] and ms is a parameter called the mutation
step. Similarly to GSC, Moraglio and coauthors show that GSM corresponds to a box
mutation on the semantic space. Consequently, the operator induces a unimodal error
surface on any SML problem.

The demonstration of how GSM induces a unimodal error surface can be found in
Figure 6, which represents a chain of possible individuals that could be generated by
applying GSM several times and their corresponding semantics (left and right subfigures,
respectively). Here, for the sake of visualization, we present a simple 2D semantic space,
where each solution is represented by a point (this corresponds to the case when there
are only two training instances). The known global is represented with a red star. Each
point in the figure is “surrounded” by a gray dotted square of side ms, which corresponds
to the mutation’s step inside which the GSM allows solutions to move. As one can see,
GSM’s application allows for moving a given solution in any position inside the square,
including the one that approximates it to the target. Thus, GSM implies that there is always
a possibility of getting closer to the target. This implies that no local optima, except the
global optimum, can exist, and the fitness landscape for this problem is unimodal. The
gray arrows map the genotypic space to the phenotypic and highlight GSM’s capability
of generating a transformation on the trees’ syntax, which has an expected effect on their
semantics [44].

Genotypic Space: Semantic Space:

Figure 6. A simple visual demonstration of GSM’s genotype-phenotype mapping and its property of
introducing a unimodal error surface on any SML problem. Adapted from [44].

However, as Moraglio et al. [38] noted, GSOs create offspring that are substantially
larger than their parents are. Moreover, the fast growth of the individuals’ size rapidly
turns the fitness evaluation to slow, making the system unusable. As a solution to this
problem, Castelli et al. [45] proposed a computationally efficient implementation of GSOs,
making them usable in practice.

Appl. Sci. 2021, 11, 4774 16 of 34

Given the growing importance of GSOs, we decided to include them in our library,
following the efficient implementation guidelines proposed in [26]. More specifically, we
implemented GSGP through a specialized class called GSGP, a subclass of GeneticAlgo-
rithm, which encapsulates the aforementioned efficient implementation of GSOs and is
intended to work in conjunction with SMLGS (which was also specially designed to incor-
porate the aforementioned guidelines). The class GSGP is characterized by the following
instance attributes:

• pi, best_sol, pop_size, pop, initializer, selector, mutator, crossover, p_m p_c, elitism, reproduc-
tion, seed, and device are inherited from the GeneticAlgorithm class.

• _reconstruct is a flag stating whether the initial population and the intermediary
random trees should be disk-cached. If the value is set to “False”, then there is no
possibility of reconstructing the individuals after the search is finished; this scenario
is useful to conduct the parameter tuning, for example. If the value is set to “True”,
then the individuals can be reconstructed by means of an auxiliary procedure (the
function gpol.utils.inductive_programming.prm_reconstruct_tree) after the search
is finished; this scenario is useful when the final solution needs to be deployed,
for example.

• path_init_pop is a connection string toward the initial population’s repository.
• path_rts is a connection string toward the random trees’ repository.
• pop_ids are the IDs of the current population (the population of parents).
• history is a dictionary which stores the history of operations applied on each offspring.

In abstract terms, it stores a one-level family tree of a given offspring. Specifically,
history stores as a key the offspring’s ID, as a value a dictionary with the following
key-value pairs:

– “Iter” is the iteration’s number;
“Operator” is the variation operator that was applied on a given offspring;

– “T1” is the ID of the first parent;
– “T2” is the ID of the second parent (if GSC was applied);
– “Tr” is the ID of a random tree;
– “ms” is mutation’s step (if GSM was applied);
– “Fitness” is the offspring’s training fitness.

Moreover, it implements a method called write_history, which writes locally (following
a user-specified path) the history dictionary as a table in a comma-separated value (csv)
format. This file will feed the aforementioned reconstruction algorithm.

Appendix B.4 demonstrates how to create an instance of GSGP and apply it in different
problem solving, whereas Appendix B.5 demonstrates how to reconstruct an individual
generated by means of GSGP.

3.3.4. Differential Evolution (DE)

Differential evolution (DE) is another type of metaheuristic that we have considered
including in our library. Storn and Price in 1995 [46,47] originally designed this PB meta-
heuristic for solving continuous optimization problems in 1995. The algorithm shares
many similar features with GA, as it involves maintaining a population of candidate solu-
tions, which are exposed to iterative selection and variation (also known as recombination).
Nevertheless, DE differs substantially from GA in how the selection and the variation are
performed. The parent selection is performed at random, meaning that all the chromo-
somes have an equal probability of being selected for mating, regardless of their fitness.
The variation consists of two steps: mutation and crossover. Numerous different operators
were proposed so far [48,49]; however, in this release, we have considered including their
original versions [46]. For each parent member (called the target vector), the mutation
creates a mutant based on the scaled difference between two randomly selected parents,
added to a third (random) population member. The scaling factor F, which controls the
amplification of the differential variation, usually lies in [0.4, 1] as reported in [50]. In
binomial crossover, the type of crossover we have included in the library, the elements

Appl. Sci. 2021, 11, 4774 17 of 34

of the resulting mutant (called the donor) are exchanged, with probability Cr, with the
elements of one of the previously selected parents (called the target). That is, the crossover
is performed on each of the D indexes of the donor with a probability Cr by exchanging its
values with the target vector. The resulting vector, frequently called the trial vector, is then
compared with the respective target and the best solution passes to the next iteration.

Following the above-presented rationale, we have conceptualized a class called
DifferentialEvolution, a subclass of PopulationBased, characterized by the following
instance attributes:

• pi, initializer, best_sol, pop_size, pop, mutator, seed, and device are inherited from
the PopulationBased;

• selector is an operator that selects parents for the sake of mutation;
• crossover: crossover operator.

At this point, it becomes necessary to clarify some aspects of the nomenclature. Al-
though, in the scope of the original nomenclature, selection stands for the procedure that
decides whether trial vectors should become members of the next generation, in this library,
selection represents the process of selecting parents for the sake of mutation. This process
can be conducted at random, as in the original definition of DE, or can be a function of
a solution’s fitness. The selection, as understood by the DE, is implemented in a private
method called _replacement: it compares each trial vector with its respective target and
returns the most fit solution.

Figure 7 presents the main steps that the solve method of DifferentialEvolution
class implements.

Differential Evolution:

• create a random initial population P of size n;
• repeat until satisfying some stopping criterion (like the number of iterations/generations):

– calculate the fitness ∀ parameter vector xi (also known as an individual) in P;
– create an empty population P′—the population of offspring;
– repeat until P′ contains n individuals:

* for a given xi from P (from now target vector), randomly select three other parameter vectors xr1, xr2 and xr3;
* apply the mutation operator to obtain the donor vector (also known as a mutant). Assuming DE/RAND/1

strategy: vi = xr1 + F(xr2 − xr3), where F is a mutation factor;
* apply the crossover operator to obtain the trial vector ui. Assuming binomial crossover with a probability cr:

ui,j =

{
vi,j i f ∼ U(0, 1) 6 cr
xi,j i f ∼ U(0, 1) > cr , j = 1, ..., D (i.e., the dimensionality), and ∼ U(0, 1) a random float in [0, 1];

* evaluate ui;
* select the most fit candidate solution from the set [xi, ui] and insert it into P′;

– replace P with P′.
• return the best individual in P;

Figure 7. Procedural steps of differential evolution.

It is worth highlighting the high flexibility of the implementation: because of the par-
ents’ selection operator, the mutation and crossover functions are provided as parameters
of DifferentialEvolution, and one can easily personalize this PB metaheuristic.

Appendix B.6 demonstrates how to create an instance of DifferentialEvolution and
apply it in different problem solving.

3.3.5. Particle Swarm Optimization

Particle swarm optimization (PSO) is another form of PB metaheuristic, developed
by Eberhart and Kennedy in 1995 [51]. Contrarily to previously presented EAs, PSO was
inspired by the social behavior of living organisms, such as birds and fish, when looking for
food sources. Following PSO’s nomenclature, a population is called swarm, and a candidate
solution is a particle.

Appl. Sci. 2021, 11, 4774 18 of 34

In PSO, the position of particle p at iteration i, formally represented as ~xp,i, is up-
dated at each iteration based on a procedure that takes into account two components:
particle’s and swarm’s best-so-far positions. The former (also known as the local best)
relates to the cognitive component of the particle (i.e., its memory). The latter (also
known as the global best) relates to the social component of the particle (i.e., its cooper-
ation with surrounding neighbors). Since the introduction of PSO, the scientific com-
munity has proposed numerous variations to improve its effectiveness. In our library,
we rely on the variant of gbest PSO proposed by Shi and Eberhart in 1998 [52], where
authors have introduced a new parameter, called inertia weight (w). Formally, the pro-
cedure for a particle’s position update is defined as ~x(p,i) = ~x(p, i−1) + ~v(p,i), such that

~v(p,i) = w ∗~v(p, i−1) + C1~φ1(~lbestp − ~x(p, i−1)) + C2~φ2(~gbest− ~x(p, i−1)), where ~lbestp and
~gbest represent the local and global best, respectively, with C1 and C2 being two positive

constants used to scale their contributions in the equation (also known as acceleration coef-
ficients). The quantities ~φ1 and ~φ2 are two random vectors whose values follow∼U(0, 1) at
each dimension. Since a large value of w can help to find a good area through exploration
in the beginning of the search, and a small w in the end, when typically a good area was
found already, a time-decreasing w can be used instead of a fixed one [53].

Following the aforementioned definition of the update-rule, the swarm’s positions are
updated, taking in consideration the same version of the global best, which was obtained
after evaluating the whole swarm at the previous iteration (i− 1). That is, the global best
is first identified and then used by all the particles in the swarm. The strength of this
update method, frequently called synchronous-PSO (S-PSO), relies in the exploitation
of the information. The main steps of S-PSO are represented in Figure 8. Carlisle and
Dozier [54] proposed an asynchronous update (A-PSO), in which global best is identified
immediately after updating the position of each particle. Hence, particles are updated
using incomplete information, enhancing the algorithm’s exploratory features. The main
steps of A-PSO is represented in Figure 9.

Synchronous Particle Swarm Optimization:

• create a random initial swarm Sw of size n;
• repeat until satisfying some stopping criterion (like the number of iterations/generations):

– calculate the fitness ∀ particle p in Sw;
– update the local best ∀ p in Sw (the cognitive factor);
– update the global best in Sw (the social factor);
– update the velocity ∀ p in Sw: vp(t) = w ∗ vp(t− 1)+C1 ∗R1 ∗ (gBest− posp(t− 1))+C2 ∗R2 ∗ (lBestp− posp(t− 1));
– update the position ∀ p in Sw: posp(t) = posp(t− 1) + vp(t);

• return the best individual in Sw;

Figure 8. Procedural steps of S-PSO.

After the introduction of A-PSO, one can identify some degree of ambiguity in the
scientific community regarding which variant performs better; some pointing to its su-
periority [55], but others point to the opposite [56]. For this reason, we have decided to
include both variants to open the possibility to assessing the impact of synchronization
in continuous problem solving. These are implemented as SPSO and APSO classes. The
former extends PopulationBased, whereas the latter extends SPSO; both require an addi-
tional parameter, called v_clamp which allows one to bound represents the velocity vector
to foster the convergence, as suggested in [53]. The solve method for SPSO and APSO
reflects the underlying algorithmic logic which guides the search-procedure. Additionally,
both classes implement a private method, called _update, which efficiently encapsulates
step number 2 from the procedural steps of S-PSO and A-PSO, and constitutes the main
difference between the two classes. In the scope of swarm intelligence, the force-generating
mechanism that yields ~x(p,i) (and essentially, dictates how how the candidate solutions will
“move” across S) is encapsulated in the mutator function, and is provided as a parameter
during algorithms’ instantiate-generation. In this sense, the function force-generating

Appl. Sci. 2021, 11, 4774 19 of 34

function is completely abstracted from the PSO algorithm, meaning that the user can easily
personalize it with any other update-rule, if the interface is respected.

Asynchronous Particle Swarm Optimization:

• create a random initial swarm Sw of size n;
• repeat until satisfying some stopping criterion (like the number of iterations/generations):

– calculate the fitness ∀ particle p in Sw;
– for particle p in Sw:

update the local best of p (the cognitive factor);
update the global best of p (the social factor);
update the velocity of p:
vp(t) = w ∗ vp(t− 1) + C1 ∗ R1 ∗ (gBest− posp(t− 1)) + C2 ∗ R2 ∗ (lBestp − posp(t− 1));
update the position of p: posp(t) = posp(t− 1) + vp(t);

• return the best individual in Sw;

Figure 9. Procedural steps of A-PSO.

Appendix B.7 demonstrates how to create an instance of SPSO and apply it in different
problem solving.

4. Operators

This library provides a broad range of operators that can be classified into three main
groups, each stored as a module in a package called operators: the initialization (initializers),
the selection (selectors), and the variation (variators) groups. A flexible implementation
allows the same operators to be used across different metaheuristics, and in some cases,
optimization problems. Thus, the operators must follow a predefined signature. The
following subsections present the operator groups.

4.1. Initialization

The purpose of an initialization operator, from now on called the “initializer”, is to
create an initial point in search space S of a given problem’s instance. From the definition,
one can easily derive that these kinds of operators are problem-specific, as such, their
execution needs the problem context formalized by S itself. Given this rationale, all the
initializers implemented in this library are functions that receive at least the sspace and the
device parameters (the latter to indicate on which processing device the solutions should
be allocated); this is the case of SP algorithms, such as RandomSearch, HillClimbing,
and SimulatedAnnealing. In the case of PB algorithms, an initializer has one additional
parameter, called n_sols, which represents the population’s/swarm’s size. Such branching
is necessary because, by definition, not all the PB initialization operators can generate one
solution. Additionally, it allows the user to encapsulate a computationally more efficient
generation of a set of initial solutions.

The module called initializers implements all the necessary initialization functions that
can be used to solve any kind of problem admitted in this library. Table 1 enumerates the
initializers and indicates for which problem types these can be applied. From the table,
the column Function represents the name of the implemented initialization function, OP
type stands for the type of problem for which the respective function can be applied, MH
represents whether the function was designed for a SP or PB metaheuristic, and finally, the
column Description briefly describes each function.

As will be shown with more detail in Section 4.3, the library’s interface restricts the
variation operators’ parameters to solutions’ representation (only). However, some of
the GP’s variation operators generate random trees, such as the sub-tree mutation and
the geometric semantic operators, and their enclosing scope does not contain enough
information to perform the variation operation. To remedy this situation, Python closures
are used to provide the variation functions with the necessary outer scope for the trees’
initialization (the search space). In this sense, the prefix “prm” (means parametric), for

Appl. Sci. 2021, 11, 4774 20 of 34

grow and full, represents the usage of a Python closure; for example, prm_grow is a special
adaptation of the grow function that accepts as a parameter the S of a given problem’s
instance. Additionally, this solution allows one to have a deeper control over the operators’
functioning—an important feature for the research purposes.

Table 1. Descriptions of the initializers implemented.

Function OP Type MH Description

prm_rnd_vint(lb, ub) Knapsack SP vector generated under ∼ U{lb, ub}
prm_rnd_mint(lb, ub) PB matrix generated under ∼ U{lb, ub}

rnd_vshuffle
TSP

SP permutation vector of cities

rnd_mshuffle PB permutation matrix of cities

rnd_vuniform Continuous SP vector generated under ∼ U(lb, ub)

rnd_muniform PB matrix generated under ∼ U(lb, ub)

grow

SML-IP
SP

LISP tree created with Grow method [36]
prm_grow(sspace)

full
LISP tree created with Full method [36]

prm_full(sspace)

rhh
PB

list of LISP trees created with RHH [36]

prm_edda list of LISP trees created with EDDA [57,58]

4.2. Selection

A portion of the existing population is selected to breed a new generation. Individual
solutions are selected through a fitness-based process, through which better solutions (as
measured by a fitness function) are typically more likely to be selected. Certain selec-
tion methods rate the fitness of each solution and preferentially select the best solutions.
Other methods rate only a random sample of the population, as the former process may
be time-consuming.

The purpose of a selection operator, from now on called the “selector”, is to select a
subset of individuals from the parent population for the sake of “breeding” (simulated
through the application of the variation operators, to be described in the next subsection).
The parent selection is traditionally fitness-based (i.e., the likelihood of selecting an indi-
vidual increases with its fitness). From the definition, one can already deduce that this kind
of operator is (1) specific to the population-based metaheuristics, namely, the branch of
evolutionary algorithms, and (2) typically representation-free, as such they do not depend
on a specific type of problem. Given this rationale, all the selectors implemented in this
library are functions that receive the reference to the parent population (an object of type
Population from where to select an individual), and the optimization’s purpose (min_).

The module called selectors implements all the necessary selectors that can be used to
solve any kind of problem admitted in this library. Table 2 enumerates them and describes
their functionality. More specifically, the column Function represents the name of the
implemented initialization function; MH type identifies the type of metaheuristic for which
the selector can be used; and finally, the column Description briefly describes each function.

As previously mentioned, all the selectors in this library accept two parameters:
Population and min_. This configuration suits the majority of selectors. However, some
operators require a larger enclosing scope; this is the case of tournament selection which
requires an additional parameter: the selection’s pressure. To remedy this situation, Python
closures are used to provide the selectors with the necessary outer scope. In this sense, the
prefix “prm” in prm_tournament represents the usage of a Python closure which allows
the user to parametrize the necessary pressure. Similarly, prm_dernd_selection receives
an outer parameter called n_sols, which tells the function how many random vectors to

Appl. Sci. 2021, 11, 4774 21 of 34

select for the sake of the DE’s mutation. In this sense, the parameter n_sols allows for easily
including different DE mutation strategies, as these might include different amounts of
random vectors.

Table 2. Descriptions of the selectors implemented.

Function MH Type Description

prm_tournament(pressure)

{GA, GSGP}

tournament selection of one individual

roulette_wheel roulette wheel selection of one individual

rank_selection rank-based selection of one individual

rnd_selection selects one individual at random

prm_dernd_selection(n_sols) DE random selection of n_sols vectors

4.3. Variation Functions

The functioning of an metaheuristic directly depends on the procedural steps that
control the candidate-solutions’ “movement” across search space S and between iterations
i to i + 1. These steps fully characterize the algorithm and its logic. However, there is
another important component, that can be abstracted from the algorithms’ high-level steps:
the operators. In the evolutionary algorithms, these can be the crossover, the mutation,
and in some cases, the reproduction. In swarm intelligence, these are the force-generating
equations that update the particles’ positions. In a local search, these are the neighbor-
generating functions (also known as the neighborhood functions). This library provides
a wide range of different variation operators for different types of metaheuristics and
optimization problems. Moreover, we formalize a connection between the local search and
the evolutionary branches of metaheuristics, smoothing the distinction between the EA
mutation and the LS neighbor-generating operators. That is, the mutation functions used
with GA, GP, or GSGP can be directly used for HC or SA. In our opinion, this decision
enhances the flexibility, the reliability and the objectiveness of the direct comparison
between EAs and LSs.

Given the aforementioned equivalency between EA mutation and LS neighborhood
generation, the variation functions implemented in this library are classified into three
types: the mutators, the crossovers, and the force-generating equations, the latter being
specific to PSO. In GPOL, the variation operators act directly upon solution representations
and return new, potentially improved, representations. For this reason, the conventional
signature for the EAs’ variation operators and their output is the following:

• mutator(repr_), where repr_ stands for the representation of a single parent solution
to be mutated, and the function returns the mutated copy of repr_;

• crossover(p1_repr, p2_repr), where p1_repr and p2_repr stand for the representations
of two different parents, and the function returns two modified copies of p1_repr
and p2_repr.

There is one interesting saying, frequently attributed to General MacArthur: “The
rules are mostly made to be broken”. This is also the case of this library, as there are several
exceptions regarding the aforementioned guidelines. Some operators require more than
the aforementioned parameters to work out. For example, the ball mutation, typically
used in continuous optimization, requires two additional parameters: the probability of
applying the operator at a given position of the solution’s representation and the radius of
the “ball.” This kind of exception is generally handled by means of Python closures, which
provide all the necessary outer scope for the mutation operators. Similarly, not all the
variation operators will have the same return. A notorious example of such an exception
is the efficient implementation of GSOs: as the computation is performed semantics, to
reconstruct the trees after executing the evolutionary process, one needs to keep track of
the random trees generated during the operators’ application. For this reason, GSOs will
also output the random trees to allow the efficient implementation as proposed in [26,45].

Appl. Sci. 2021, 11, 4774 22 of 34

Although DE can be classified as an EA, some of the structural differences did not
allow us to maintain the aforementioned guidelines for its signature and output; as such,
the variation operators for DE will follow a different convention. Several alternative
mutation strategies were proposed in the literature and their enumeration and descriptions
can be found in [49,50]. Most of them are present in this library. The list below presents the
signatures for the DE mutation and crossover operators and their output.

• DE/rand/N: One type of DE mutation that creates the donor vector (the mutant) from
adding N weighted differences between 2N randomly selected parent vectors to
another (2N + 1)th random parent. The underlying weights are provided by to the
functions through the Python closures. Thus, the signature of these functions simpli-
fies to mutator(parents), where parents is a collection containing (2N + 1) randomly
selected parents. The function returns one donor vector (the mutant).

• DE/best/N: Another type of DE mutation that creates the donor vector from adding N
weighted differences between 2N randomly selected parent vectors to the best parent
at the current iteration. Similarly to DE/rand/N, the weights are provided through the
Python closures. The signature of these functions simplifies to mutator(best, parents),
where best stands for the best parent and parents contains (2N + 1) random parents.
The function returns one donor vector (the mutant).

• DE/target-to-best/1: Another type of DE mutation that creates the donor from summing
the target vector’s (the current parent) two weighted differences: one between two
randomly selected parents and one between the best parent and the target vector itself.
Similarly to the previous operators, the weights are provided through the Python
closures. The signature of these functions simplifies to mutator(target, best, parents),
where target stands for the current parent, best stands for the best parent and parents
contain two random parents. The function returns one donor vector (the mutant).

• crossover(donor, target), where donor and target stand for the representations of two dif-
ferent vectors: The donor vector, generated by means of mutation, and the target vector
(current parent). The function returns the trial vector (result of the DE’s crossover).

Regarding PSO, the force-generating equations must receive the following four pa-
rameters: the position of the particle p in S (pos_p), the velocity vector from the previous
iteration (v_p), the best-so-far location found by p (lBest_p), the best-so-far location found
by the swarm (gBest), and finally, the current and the maximum number of iterations (being
the latter two necessary for the inertia’s update). All the remaining parameters must be
provided in the outer scope by means of Python closures. In this sense, the prefix “prm”
in prm_pso represents the usage of a closure that allows the user to specify the neces-
sary social (c1) and cognitive (c2) factor weights, along with the inertia’s range (w_max
and w_min).

The module called variators implements all the necessary variation operators that
can be used to solve any kind of problem admitted in this library. Table 3 enumerates
them operators and describes their functionalities. More specifically, the column Function
represents the name of the implemented initialization function; MH type identifies the type
of metaheuristic for which the selector can be used; and finally, the column Description
briefly describes each function.

Appl. Sci. 2021, 11, 4774 23 of 34

Table 3. Descriptions of the variators implemented.

Function OP MH Description

one_point_xo

Knapsack01

GA, HC, SA

one point crossover

prm_n_point_xo(n) n point crossover

binary_flip flips a randomly selected value (~xi =!~xi)

prm_ibinary_flip(prob) ~xi =!~xi with P(Mi) = prob

prm_rnd_int_ibound(prob, lb, ub) KnapsackBounded ~xi ∼ U{lb, ub} with P(Mi) = prob

partially_mapped_xo
TSP

partially mapped crossover

prm_iswap_mtn(prob) random swap of the ith element with P(Mi) = prob

geometric_xo

Continuous Function

geometric crossover [59]

prm_iball_mtn ball mutation [59]

de_binomial_xo(prob)

DE

binomial crossover for DE

de_exponential_xo(prob) exponential crossover for DE

de_rand DE/RAND/N mutation scheme

de_best DE/BEST/N mutation scheme

de_target_to_best DE/TARGET-TO-BEST/N mutation scheme

prm_pso(c1, c2, w_max, w_min) A-PSO PSO’s force-generating equation (also known as
update rule)

swap_xo

SML-IP

{GA, HC, SA}

standard GP’s crossover (also known as a swap
crossover)

prm_gs_xo(initializer, device) GSC that works upon tree-like representations [38]

hoist_mtn hoist mutation

prm_point_mtn(sspace, prob) point mutation

prm_subtree_mtn(initializer) standard GP’s mutation (also known as a sub-tree
mutation) [38]

prm_gs_mtn(initializer, ms) GSM that works upon tree-like representations

prm_efficient_gs_xo(X, initializer)
GSGP

efficient GSC that works upon semantics [45]

prm_efficient_gs_mtn(X, initializer, ms) efficient GSM that works upon semantics [45]

5. Solutions

The purpose of a search algorithm (SA) is to solve a given problem. The search
process consists of traveling across the search space S in a specific manner (which is
embedded in the algorithm’s definition). This “tour” consists of generating solutions from
S and evaluating them through f . In this context, a solution can be seen as the essential
component in the mosaic composing this library. Concretely, we implement a special data
structure, called Solution, which encapsulates the necessary attributes and behavior of a
given candidate solution, specifically the unique identification, the representation in the
light of a given problem, the validity state in the light of S, and the fitness value(s) (which
can be several, depending if data partitioning was used). To ease the library’s necessity for
flexibility, in this release, the solution’s representation can take one of two forms: either
a list or a tensor (torch.Tensor). The former relates to GP trees, and the latter relates to the
remaining array-based representations.

Some algorithms manipulate whole sets of solutions at a time to perform such a search.
For this reason, in the scope of this library, a special class was created to encapsulate
the whole population of candidate solutions efficiently. Specifically, to avoid redundant
generations of objects to store a set of solutions, their essential characteristics will be
efficiently stored as a limited set of macro-objects, all encapsulated in the class Population.

6. Conclusions

We presented GPOL: a new Python library for numerical optimization that unites,
under the same “umbrella”, a wide range of stochastic iterative search algorithms and opti-

Appl. Sci. 2021, 11, 4774 24 of 34

mization problems. The library’s flexible and modular implementation provides the user
with a controlled and intuitive environment for benchmarking. The efficient implemen-
tation and optional GPU acceleration make the library suitable for heavy computational
tasks. Moreover, the library provides for the implementation of several state-of-the-art
algorithms and is flexible enough to incorporate new techniques and approaches easily.
This contribution should be useful for the scientific and practitioner communities.

Supplementary Materials: The Supplementary Material are available at https://www.mdpi.com/a
rticle/10.3390/app11114774/s1.

Author Contributions: Conceptualization, I.B.; methodology, I.B.; software, I.B. and M.B.; validation,
I.B. and M.B.; formal analysis, I.B. and M.B.; investigation, I.B. and M.B.; resources, M.C., R.S. and
L.V.; data curation, I.B. and M.B.; writing—original draft preparation, I.B. and M.B.; writing—review
and editing, I.B., M.B., M.C., R.S. and L.V.; visualization, I.B. and M.B.; supervision, I.B., M.B., M.C.,
R.S. and L.V.; project administration, M.C., R.S. and L.V.; funding acquisition, M.C. and L.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by FCT, Portugal, through funding of the projects
GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCI-INF/29168/2017), and AICE (DSAIPA
/DS/0113/2019); and the financial support from the Slovenian Research Agency (research core
funding no. P5-0410).

Data Availability Statement: The data presented in this study are available in the
Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Creating Problem Instances

In this section, we provide and explain the examples of how to create different problem
instances in GPOL. Each of the following subsections shows a conceptually different type
of problem, and the order follows the presentation of optimization problems in Section 2.

Appendix A.1. Creating an Instance of Box

Figure A1 shows how to create an instance of the Box problem to find the minimum
point of a 2D Rastrigin function, a popular continuous optimization test function in the
scientific community [60,61]. As illustrated in the example and in the code comments, the
main steps are (1) define the search space S, by specifying the number of dimensions in the
Rastrigin problem and the (regular) bounds; and (2) create an instance of the Box problem
by passing to the constructor the aforementioned S, the fitness function, the optimization’s
purpose, and whether to bound the outlying solutions’ dimensions.

1 import torch
2 from gpol.problems.continuous import Box
3 from gpol.problems.utils import rastrigin_function
4

5 # Defines the processing device
6 device = "cuda" if torch.cuda.is_available () else "cpu"
7 # Defines the lower and upper bounds at each dimension
8 bounds = torch.tensor ([-5.12, 5.12], device=device)
9 # Creates the search space

10 sspace_continuous = {"n_dims": 2, "bounds": bounds}
11 # Creates problem ’s instance
12 pi_continuous = Box(sspace=sspace_continuous , ffunction=

rastrigin_function ,
13 min_=True , bound=True)

Figure A1. A demonstration of how to create an instance of the Box problem.

https://www.mdpi.com/article/10.3390/app11114774/s1
https://www.mdpi.com/article/10.3390/app11114774/s1

Appl. Sci. 2021, 11, 4774 25 of 34

Appendix A.2. Creating an Instance of TSP

Figure A2 shows how to create an instance of TSP to find the minimum travel distance
for tour among 13 cities. The first part of the example defines a (symmetric) distance matrix
whose (i, j) entry corresponds to the distance from location i to location j in miles (for
more information, follow the source from which the example was taken [62]). Note that
the matrix can also be asymmetric. Once the distance matrix is declared, one has to do
only two things: create a TSP-specific S, by providing the distance matrix and the index of
the origin city; and declare an instance of TSP, by providing the S, the fitness function (in
this case, the traveling distance), and the optimization’s purpose (minimization). When
compared to the example of Figure A1, one can already notice the intrinsic characteristics
of the API in regard to problem instance’s creation. Note that the variables defined and
used there, namely, the device, are assumed to be accessible in the “enclosing scope” of the
current example.

1 from gpol.problems.tsp import TSP
2 from gpol.utils.utils import travel_distance
3

4 # Defines a symmetric distance matrix
5 dist_mtrx = torch.tensor ([
6 [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972],
7 [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579],
8 [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260] ,
9 [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987],

10 [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371],
11 [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999],
12 [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701],
13 [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300,

2099],
14 [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600],
15 [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162],
16 [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200] ,
17 [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504],
18 [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0]],

dtype=torch.float , device=device)
19 # Creates the search space
20 sspace_tsp = {"distances": dist_mtrx , "origin": 0}
21 # Creates problem ’s instance
22 pi_tsp = TSP(sspace=sspace_tsp , ffunction=travel_distance , min_=True)

Figure A2. A demonstration of how to create an instance of the TSP problem.

Appendix A.3. Creating Instances of Knapsack01 and KnapsackBounded

Figure A3 shows how to create instances of Knapsack01 and KnapsackBounded prob-
lems to pack a fixed-size knapsack with the most valuable items from the set of available
items. Recall that the latter allows one to have several copies of an item. In this example,
the items’ weights and values are randomly generated 1D tensors (vectors); however, these
can hold any user-specified values (for example, one can import them from a file). Note that
both instances in this example use the same S; the only difference is that, before creating an
instance of KnapsackBounded, S is altered in the capacity and added to the items’ quantity
bounds (in this example, each item can appear four times at most).

Appl. Sci. 2021, 11, 4774 26 of 34

1 from gpol.problems.knapsack import Knapsack01 , KnapsackBounded
2

3 # Chooses the random state ’s seed
4 seed = 0
5 # Sets the random state (for generation of random weights and values)
6 torch.manual_seed(seed)
7 # Defines the number of items and knapsack ’s capacity
8 n_items , capacity = 17, 40
9 # Randomly generates items’ weights and values

10 weights = torch.FloatTensor(n_items).uniform_(1, 9).to(device),
11 values = torch.FloatTensor(n_items).uniform_ (0.5, 20).to(device)
12 # Creates the search space
13 sspace_knapsack01 = {"capacity": capacity , "n_dims": n_items ,
14 "weights": weights , "values": weights}
15 # Creates an instance of Knapsack01
16 pi_knapsack01 = Knapsack01(sspace=sspace_knapsack01 ,
17 ffunction=torch.matmul , min_=False)
18 # Defines maximum number of items’ copies
19 max_rep = 4
20 # Copies the search space for the KnapsackBounded problem
21 sspace_knapsack04 = sspace_knapsack01.copy()
22 # Overrides capacity and adds bounds to the search space
23 sspace_knapsack04["capacity"] = capacity*max_rep
24 sspace_knapsack04["bounds"] = torch.stack((torch.zeros(n_items),
25 max_rep*torch.ones(n_items))).to(device)
26 # Creates an instance of KnapsackBounded
27 pi_knapsack04 = KnapsackBounded(sspace=sspace_knapsack04 ,
28 ffunction=torch.matmul , min_=False)

Figure A3. A demonstration of how to create instances of Knapsack01 and KnapsackBounded problems.

Appendix A.4. Creating an Instance of SML

Figure A4 shows how to create an instance of SML to predict the median value of
owner-occupied homes in Boston, a popular dataset for ML algorithm benchmarks [29],
originally published by [63].

1 from torch.utils.data import TensorDataset , DataLoader
2 from gpol.problems.inductive_programming import SML
3 from gpol.utils.datasets import load_boston
4 from gpol.utils.utils import train_test_split , rmse
5 from gpol.utils.inductive_programming import function_map
6

7 # Loads the data
8 X, y = load_boston(X_y=True)
9 # Defines parameters for the data usage

10 batch_size , shuffle , p_test = 50, True , 0.3
11 # Performs train/test split
12 X_train , X_test , y_train , y_test = train_test_split(X, y, p_test=p_test ,

seed=seed)
13 # Creates training and test data sets
14 ds_train = TensorDataset(X_train , y_train)
15 ds_test = TensorDataset(X_test , y_test)
16 # Creates training and test data loaders
17 dl_train = DataLoader(ds_train , batch_size , shuffle)
18 dl_test = DataLoader(ds_test , batch_size , shuffle)
19 # Characterizes the program elements: function and constant sets
20 fset=[function_map["add"], function_map["sub"], function_map["mul"],

function_map["div"]]
21 cset=torch.tensor ([-1.,-.5, .5, 1.], dtype=torch.float64 , device=device)
22 # Defines the search space
23 sspace_sml = {"n_dims": X.shape[1], "function_set": fset ,
24 "constant_set": cset , "p_constants": 0.1, "max_init_depth": 5,
25 "max_depth": 15, "n_batches": 1}
26 # Creates an instance of SML
27 pi_sml = SML(pi=sspace_sml , ffunction=rmse , dl_train=dl_train ,
28 dl_test=dl_test , min_=True , n_jobs =2)

Figure A4. A demonstration of how to create an instance of SML problem.

Appl. Sci. 2021, 11, 4774 27 of 34

Appendix B. Algorithm Creation and Applications for Problem-Solving

This section shows and explains how to create different algorithm instances and apply
them for problem solving. Each of the following subsections shows a conceptually different
type of algorithm, and the order follows the presentation of metaheuristics in Section 3. It
is necessary to mention that the code snippets of this section assume that variables created
in Appendix A are “cached”, and thus accessible in the “enclosing scope”.

Appendix B.1. Applying Random Search

Figure A5 shows how to apply the RS algorithm to solve all the aforementioned
problem instances, except SMLGS because it was specifically designed to work with GSGP.
The script exemplifies how a given metaheuristic, such as RS, can be used to solve any type
of problem in the scope of this library. The modular implementation allows one to reuse the
code of RandomSearch for any type of problem easily by simply providing the algorithm’s
instance with a problem-specific initialization function. In this sense, the initialization
functions generate initial solutions according to the instance’s search space S.

1 from gpol.algorithms.random_search import RandomSearch
2 from gpol.operators.initializers import rnd_vuniform , prm_rnd_vint ,

rnd_vshuffle , grow
3

4 # Defines demos ’ computational resources
5 ps, n_iter = 100, 20
6 # Recomputes the resources for RandomSearch
7 n_iter_rs = 100*20
8 # Creates parameters ’ dictionary
9 pars = {"Rastrigin": {"pi": pi_continuous , "initializer": rnd_vuniform ,

10 "seed": seed , "device": device},
11 "Knapsack01": {"pi": pi_knapsack01 , "initializer": prm_rnd_vint (),
12 "seed": seed , "device": device},
13 "KnapsackBounded": {"pi": pi_knapsack04 , "initializer": prm_rnd_vint(
14 0, max_rep +1), "seed": seed , "device": device},
15 "TSP": {"pi": pi_tsp , "initializer": rnd_vshuffle , "seed": seed ,
16 "device": device},
17 "Boston": {"pi": pi_sml , "initializer": grow , "seed": seed ,
18 "device": device }}
19 # Applies RandomSearch on 5 different problem types
20 for prob , pars_i in pars.items():
21 print("Problem: {}".format(prob))
22 mheuristic = RandomSearch (** pars_i) # creates RandomSearch ’s instance
23 mheuristic.solve(n_iter_rs)
24 print("Best fitness: {:.3f}".format(mheuristic.best_sol.fit.item()))
25 print("Best solution:", mheuristic.best_sol.repr_ , end="\n\n")
26

27 >Problem: Rastrigin
28 >Best solution ‘s fitness: 1.084
29 >Best solution: tensor ([0.0184 , -0.9844])
30

31 >Problem: Knapsack01
32 >Best solution ‘s fitness: 81.624
33 >Best solution: tensor ([0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,

1])
34

35 >Problem: KnapsackBounded
36 >Best solution ‘s fitness: 460.080
37 >Best solution: tensor ([1, 3, 3, 2, 3, 4, 0, 2, 3, 0, 0, 4, 2, 1, 3, 4,

4])
38

39 >Problem: TSP
40 >Best solution ‘s fitness: 10021.000
41 >Best solution: tensor ([3, 2, 11, 12, 8, 1, 4, 6, 5, 10, 9, 7])
42

43 >Problem: Boston
44 >Best solution ‘s fitness: 7.629
45 >Best solution: [div , 11, 10]

Figure A5. Examples of RandomSearch being used to solve various problems.

Appl. Sci. 2021, 11, 4774 28 of 34

Appendix B.2. Applying Local Search

Figure A6 shows how to use one of the available LS algorithms—the SA—to solve
the aforementioned problems; note that the variables defined and used in Figure A5 are
assumed to be “cached”, and thus accessible in the “enclosing scope” of this example.
Figure A6 shows that the implementation of SA allows one to solve any type of problem
easily, if provided the correct problem-specific initialization and neighborhood functions
(the latter can accept the some parameters because Python closures were used in their
implementation). The dictionary neighborhood_functions defines the problem-specific neigh-
borhood functions that, in the for loop, are appended to the problem-specific dictionary of
the algorithm’s hyperparameters (pars). Once the set of algorithmic parameters is defined,
SimulatedAnnealing’s constructor is provided the necessary parameters’ dictionary, and
the search is executed for a given number of iterations. Note that a detailed description of
the neighborhood functions, along with other operators, can be found in Section 4.

1 from gpol.algorithms.local_search import SimulatedAnnealing
2 from gpol.operators.initializers prm_grow
3 from gpol.operators.variators prm_iball_mtn , prm_ibinary_flip , \
4 prm_rnd_int_ibound , prm_iswap_mtn , prm_subtree_mtn
5

6 # Creates a dictionary with problem -specific neighborhood functions
7 neighborhood_functions = {"Rastrigin": prm_iball_mtn(prob =0.5, radius

=0.3),
8 "Knapsack01": prm_ibinary_flip(prob =0.5) ,
9 "KnapsackBounded": prm_rnd_int_ibound(prob =0.5, lb=0, ub=max_rep +1),

10 "TSP": prm_iswap_mtn(prob =0.5),
11 "Boston": prm_subtree_mtn(initializer=prm_full(sspace_sml))}
12 # Applies SimulatedAnnealing on 5 different problem types
13 for prob , pars_i in pars.items():
14 pars_i["nh_function"] = neighborhood_functions[prob]
15 pars_i["nh_size"] = ps]
16 print("Problem: {}".format(prob))
17 mheuristic = SimulatedAnnealing (** pars_i)
18 mheuristic.solve(n_iter)
19 print("Best fitness: {:.3f}".format(mheuristic.best_sol.fit.item()))
20 print("Best solution:", mheuristic.best_sol.repr_ , end="\n\n"))
21

22 > Problem: Rastrigin
23 > Best solution ‘s fitness: 8.956
24 > Best solution: tensor ([7.1427e-04, 2.9878e+00])
25

26 > Problem: Knapsack01
27 > Best solution ‘s fitness: 98.669
28 > Best solution: tensor ([0., 1., 0., 1., 0., 1., 1., 1., 1., 0., 0., 1.,

0., 0., 0., 1., 1.])
29

30 > Problem: KnapsackBounded
31 > Best solution ‘s fitness: 468.809
32 > Best solution: tensor ([0., 3., 2., 4., 2., 3., 0., 0., 0., 4., 3., 0.,

0., 1., 4., 4., 4.])
33

34 > Problem: TSP
35 > Best solution ‘s fitness: 8225.000
36 > Best solution: tensor ([7, 9, 12, 6, 8, 1, 11, 10, 5, 4, 3, 2])
37

38 > Problem: Boston
39 > Best solution ‘s fitness: 4.568
40 > Best solution: [sub , add , div , 5, 4, 5, div , 6, add , mul , add , -0.5,

12, add , -0.5, -1.0, div , 7, 5]

Figure A6. Examples of SimulatedAnnealing being used to solve various problems.

Appendix B.3. Applying Genetic Algorithms

Figure A7 shows how to apply the GAs to solve the aforementioned problems. The
reason why this example was placed after presenting GP relates to the aforementioned
paragraph: the flexible design of the library, and particularly, the class GeneticAlgorithm,

Appl. Sci. 2021, 11, 4774 29 of 34

allows using the GA (and LS) for any kind of representation, including trees. Note that
this example follows the variables defined in previous demonstrations, where the reader
was shown how to apply RS and SA for solving different types of problems, which are
assumed to be cached. The current example shows how GA can be applied to solve any
type of problem when provided problem-specific initialization, mutation, and crossover
functions. Note that, in context of GA, the LS’s neighborhood’s size and functions are seen
as the GA’s population’s size and mutation operators, respectively, and vice-versa.

From the figure, two dictionaries are created to store the problem-specific initialization
and crossover functions: pb_initializers and pb_crossovers, respectively. In the for loop, these
are appended to the problem-specific dictionary of the algorithm’s parameters (pars). Once
the set of algorithmic parameters is defined, the GeneticAlgorithm constructor is provided
the necessary parameters’ dictionary, and the search is executed for a given number of
iterations. Note that a detailed description of the crossover functions, along with the other
operators, can be found in Section 4.

1 from gpol.algorithms.genetic_algorithm import GeneticAlgorithm
2 from gpol.operators.initializers import rnd_muniform , prm_rnd_mint , rnd_mshuffle , rhh
3 from gpol.operators.variators geometric_xo , one_point_xo , partially_mapped_xo , swap_crossover
4

5 # Creates a dictionary with problem -specific PB initializers
6 initializers = {"Rastrigin": rnd_muniform , "Knapsack01": prm_rnd_mint (),
7 "KnapsackBounded": prm_rnd_mint (0, max_rep +1), "TSP": rnd_mshuffle , "Boston": rhh}
8 # Creates a dictionary with problem -specific crossovers
9 crossovers = {"Rastrigin": geometric_xo , "Knapsack01": one_point_xo ,

10 "KnapsackBounded": one_point_xo , "TSP": partially_mapped_xo ,
11 "Boston": swap_crossover}
12 # Applies GeneticAlgorithm on 5 different problems types
13 for prob , pars_i in pars.items():
14 # Updates the initializer , and adds the selector and the crossover
15 pars_i["initializer"] = pb_initializers[prob]
16 pars_i["selector"] = prm_tournament(pressure =0.1)
17 pars_i["crossover"] = pb_crossovers[prob]
18 # Renames ‘nf_function ’ with ‘mutator ’ and ‘nh_size ’ with ‘pop_size ’
19 pars_i["mutator"] = pars_i.pop("nf_function")
20 pars_i["pop_size"] = pars_i.pop("nh_size")
21 print("Problem: {}".format(prob))
22 mheuristic = GeneticAlgorithm (**pars_i , p_m=0.3, p_c=0.7, elitism=True ,
23 reproduction=False if "Boston" in prob else True)
24 mheuristic.solve(n_iter)
25 print("Best fitness: {:.3f}".format(mheuristic.best_sol.fit.item()))
26 print("Best solution:", mheuristic.best_sol.repr_ , end="\n\n"))
27

28 > Problem: Rastrigin
29 > Best solution ‘s fitness: 0.0
30 > Best solution: tensor ([-9.9587e-04, -2.3533e -05])
31

32 > Problem: Knapsack01
33 > Best solution ‘s fitness: 97.061
34 > Best solution: tensor ([1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1])
35

36 > Problem: KnapsackBounded
37 > Best solution ‘s fitness: 457.866
38 > Best solution: tensor ([4, 1, 3, 2, 4, 2, 0, 0, 1, 0, 4, 0, 0, 0, 4, 4, 3])
39

40 > Problem: TSP
41 > Best solution ‘s fitness: 8062.000
42 > Best solution: tensor ([3, 4, 11, 12, 6, 8, 1, 10, 5, 9, 2, 7])
43

44 > Problem: Boston
45 > Best solution ‘s fitness: 5.061
46 > Best solution: [add , add , add , add , div , 11, 10, div , 5, add , add , div , 11, 10, div , 11, 10, 7,

div , 5, 12, div , div , 11, 10, 12, div , 5, 12]

Figure A7. Examples of GeneticAlgorithm being used to solve various problems.

Appl. Sci. 2021, 11, 4774 30 of 34

Appendix B.4. Applying GSGP

Figure A8 shows how to use the GSGP algorithm to predict the median value of owner-
occupied homes in Boston. Consider the main differences in the API’s usage. First, unlike
what happened when solving an instance of the SML problem type, an instance of SMLGS
receives two tensors instead: X representing the input data and y the real-valued target.
Second, to create an algorithm’s instance, one must specify two additional parameters:
path_init_pop and path_rts, which represent the connection strings toward the initial and
random trees’ repositories, respectively. During GSGP’s execution, constructed trees are
stored in those folders to make individual reconstruction possible.

1 import os
2 from gpol.algorithms.genetic_algorithm import GSGP
3 from gpol.problems.inductive_programming import SMLGS
4 from gpol.operators.variators import prm_efficient_gs_xo ,

prm_efficient_gs_mtn
5

6 # Creates the search space
7 sspace_sml_gs = {"n_dims": X.shape[1], "function_set": f_set ,
8 "constant_set": c_set , "p_constants": 0.1, "max_init_depth": 5}
9 # Splits the data: gets partitions ’ indices only

10 train_indices , test_indices = train_test_split(X=X, y=y, p_test=p_test ,
shuffle=shuffle , indices_only=True , seed=seed)

11 # Creates as instance of SMLGS , a specially adapted SML type for GSOs
12 pi_sml_gs = SMLGS(sspace=sspace_sml_gs , ffunction=rmse , X=X, y=y,
13 train_indices=train_indices , test_indices=test_indices ,
14 batch_size=batch_size , min_=True)
15 # Setup logging properties
16 path=os.path.join(os.path.dirname(os.path.realpath(__file__)), "logFiles"

)
17 path_rts = os.path.join(path , "reconstruct", "rts")
18 path_init_pop = os.path.join(path , "reconstruct", "init_pop")
19 for path_i in [path , path_init , path_rts]:
20 if not os.path.exists(path_i):
21 os.makedirs(path_i)
22 # Defines GSM’s steps
23 to , by = 5.0, 0.25
24 ms = torch.arange(by, to + by, by, device=device)
25 # Creates GSGP’s instance
26 mheuristic = GSGP(pi=pi_sml_gs , path_init_pop=path_init_pop , path_rts=

path_rts , pop_size=pop_size , initializer=rhh , selector=prm_tournament
(0.1), mutator=prm_efficient_gs_mtn(X, prm_grow(pi_sml_gs), ms),

27 crossover=prm_efficient_gs_xo(X, prm_grow(pi_sml_gs)), p_m=.3,
28 p_c=.7, reproduction=False , seed=seed , device=device)
29 mheuristic.solve(n_iter=n_iters , test_elite=True)
30 print("Best training fitness = {:.3f}".format(mheuristic.best_sol.fit))
31 print("Best test fitness = {:.3f}".format(mheuristic.best_sol.test_fit))
32 print("Best solution ’s depth:", mheuristic.best_sol.depth)
33 # Writes history for individuals ’ reconstruction
34 mheuristic.write_history(path+"GSGP_history.xlsx")
35

36 > Best solution ‘s training fitness: 5.089
37 > Best solution ‘s test fitness: 5.449
38 > Best solution ‘s depth: 64

Figure A8. An example of GSGP being used in symbolic regression problem solving.

Appendix B.5. Reconstructing Trees after GSGP

Figure A9 shows how to reconstruct individuals generated by means of GSGP (consult
Appendix B.4 to see how these are created). From Figure A9 , we can see that the user only
needs to specify the path toward the initial population’s trees (path_init_pop), the random
trees that were generated throughout the evolutionary process (path_rts), and the path
toward the table containing the historical records about all the individuals (path_history).
Then, one has to create a reconstruction function, choose the index of the individual to
reconstruct, and finally, reconstruct it.

Appl. Sci. 2021, 11, 4774 31 of 34

1 import pandas as pd
2 from gpol.utils.inductive_programming import prm_reconstruct_tree ,

_get_tree_depth
3

4 # Reads history file
5 history = pd.read_excel(path + "GSGP_history.xlsx", index_col =0)
6 # Creates a reconstruction function
7 reconstructor = prm_reconstruct_tree(history , path_init_pop , path_rts ,

device)
8 # Chooses the most fit individual to reconstruct (any other can be chosen

)
9 start_idx = history["Fitness"]. idxmin ()

10 # Reconstructs the individual from the chosen index
11 tree = reconstructor(start_idx)
12 # Prints the individual ’s length , depth and representation
13 print("Best solution ’s length:", len(tree))
14 print("Best solution ’s depth:", _get_tree_depth(tree))
15 print("Best solution:", tree)
16

17 > Best solution ‘s length: 474178
18 > Best solution ‘s depth: 44
19 > Best solution: [add , add , add , mul , lf, add , sub , 1.2, add , mul , 8, 9,

div , 5, 9, -1.6, add , mul , lf, add , 12, sub , 3, ...]

Figure A9. An example of GSGP’s reconstruction.

Appendix B.6. Applying Differential Evolution

Figure A10 shows how to use DE metaheuristic to solve a continuous optimization
problem. In this example, we chose the previously defined instance with Rastrigin’s
function (see Figure A1), which was already explored in the context of LS and GA (see
Figures A6 and A7, respectively). The example uses the so-called DE/rand/1/bin search
strategy [49]: the base vector for the mutation is chosen at random (“rand”), there is one
weighted difference of randomly selected vectors (“1”), and the crossover is binomial
(“bin”). Since the number of weighted differences is 1, the mutation requires one weight
parameter that is provided to the algorithm’s constructor (m_weights=torch.tensor([0.9],
device=device)). Given that this kind of DE mutation strategy requires the selection of three
random individuals: the function prm_dernd_selection receives a value of 3.

1 from gpol.operators.selectors import prm_dernd_selection
2 from gpol.operators.variators import de_rand , de_binomial_xo
3 from gpol.algorithms.differential_evolution import DifferentialEvolution
4

5 # Chooses the Rastrigin problem
6 prob = "Rastrigin"
7 print("> Problem: {}".format(prob))
8 # Defines DifferentialEvolution ’s parameters
9 mheuristic = DifferentialEvolution(pi=pars[prob]["pi"], pop_size=ps,

initializer=pars[prob]["initializer"], selector=prm_dernd_selection(
n_sols =3), mutator=de_rand , crossover=de_binomial_xo , m_weights=torch
.tensor ([0.9] , device=device), c_rate =0.5, seed=pars[prob]["seed"],
device=pars[prob]["device"])

10 mheuristic.solve(n_iter)
11 print("> Best fitness: {:.3f}".format(mheuristic.best_sol.fit.item()))
12 print("> Best solution:", mheuristic.best_sol.repr_)
13

14 > Problem: Rastrigin
15 > Best fitness: 0.000
16 > Best solution: tensor ([0.0010 , -0.0029])

Figure A10. An example of DifferentialEvolution’s application in continuous optimization.

Appendix B.7. Applying Particle Swarm Optimization

Figure A11 shows how to use one of the available PSO algorithms (S-PSO), to solve a
continuous optimization problem. In this example, we decided to choose the previously

Appl. Sci. 2021, 11, 4774 32 of 34

defined instance with Rastrigin’s function (see Figure A1), which was already explored in
the context of LS, DE, and GA (see Figures A6, A10 and A7, respectively).

1 from gpol.operators.variators import prm_pso
2 from gpol.algorithms.swarm_intelligence import SPSO
3

4 # Chooses the Rastrigin problem
5 prob = "Rastrigin"
6 print("> Problem: {}".format(prob))
7 mheuristic = SPSO(pi=pars[prob]["pi"], pop_size=ps, initializer=pars[prob

]
8 ["initializer"], mutator=prm_pso(c1=2.0, c2=2.0, w_max =0.9, w_min

=0.4), seed=pars[prob]["seed"], device=pars[prob]["device"])
9 mheuristic.solve(n_iter)

10 print("> Best fitness: {:.3f}".format(mheuristic.best_sol.fit.item()))
11 print("> Best solution:", mheuristic.best_sol.repr_)
12

13 > Problem: Rastrigin
14 > Best fitness: 0.000
15 > Best solution: tensor ([0.0009 , 0.0010])

Figure A11. An example of SPSO’s application in continuous optimization.

References
1. Namkoong, J.E.; Henderson, M. Responding to Causal Uncertainty through Abstract Thinking. Curr. Dir. Psychol. Sci. 2019, 28,

547–651. [CrossRef]
2. Smith, P.; Wigboldus, D.; Dijksterhuis, A. Abstract thinking increases one’s sense of power. J. Exp. Soc. Psychol. 2008, 44, 378–385.

[CrossRef]
3. Vallacher, R.R.; Wegner, D.M. Levels of personal agency: Individual variation in action identification. J. Personal. Soc. Psychol.

1989, 660–671. [CrossRef]
4. Optimize Live Editor Task—MATLAB & Simulink. Available online: https://www.mathworks.com/help/matlab/math/optim

ize-live-editor-matlab.html (accessed on 16 February 2021).
5. Optimization (scipy.optimize)—SciPy v1.6.0 Reference Guide. Available online: https://docs.scipy.org/doc/scipy/reference/tut

orial/optimize.html (accessed on 16 February 2021).
6. DEAP Documentation|DEAP 1.3.1 Documentation. Available online: https://deap.readthedocs.io/en/master/ (accessed on 16

February 2021).
7. Welcome to Gplearn’s Documentation!—Gplearn 0.4.1 Documentation. Available online: https://gplearn.readthedocs.io/en/st

able/ (accessed on 16 February 2021).
8. Welcome to PySwarms’s Documentation!|PySwarms 1.3.0 Documentation. Available online: https://pyswarms.readthedocs.io/

en/latest/index.html (accessed on 16 February 2021).
9. Benitez-Hidalgo, A.; Nebro, A.J.; Garcia-Nieto, J.; Oregi, I.; Del Ser, J. jMetalPy: A Python framework for multi-objective

optimization with metaheuristics. Swarm Evol. Comput. 2019, 51, 100598. [CrossRef]
10. Project-Platypus/Platypus: A Free and Open Source Python Library for Multiobjective Optimization. Available online: https:

//github.com/Project-Platypus/Platypus (accessed on 20 April 2021).
11. Karban, P.; Pánek, D.; Orosz, T.; Petrášová, I.; Doležel, I. FEM based robust design optimization with Agros and Ārtap.

Comput. Math. Appl. 2021, 81, 618–633. [CrossRef]
12. OR-Tools|Google Developers. Available online: https://developers.google.com/optimization (accessed on 16 February 2021).
13. Voß, S. MetaheuristicsMetaheuristics. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Springer: Boston, MA,

USA, 2009; pp. 2061–2075. [CrossRef]
14. Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural

Computing; Wiley-Interscience Series in Discrete Mathematics and Optimization; Wiley: Hoboken, NJ, USA, 1989.
15. Kitzelmann, E.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Taylor & Francis: Abingdon, UK, 1984.
16. Fletcher, R.; Leyffer, S. Nonlinear programming without a penalty function. Math. Program. 1999, 91, 239–269. [CrossRef]
17. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series);

Springer: Berlin/Heidelberg, Germany, 2005.
18. Jeyakumar, V.; Rubinov, A. Continuous Optimization: Current Trends and Modern Applications; Springer: Berlin/Heidelberg,

Germany, 2005.
19. Bartashevich, P.; Grimaldi, L.; Mostaghim, S. PSO-based Search mechanism in dynamic environments: Swarms in Vector Fields.

In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 1263–1270.
[CrossRef]

http://doi.org/10.1177/0963721419859346
http://dx.doi.org/10.1016/j.jesp.2006.12.005
http://dx.doi.org/10.1037/0022-3514.57.4.660
https://www.mathworks.com/help/matlab/math/optimize-live-editor-matlab.html
https://www.mathworks.com/help/matlab/math/optimize-live-editor-matlab.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://deap.readthedocs.io/en/master/
https://gplearn.readthedocs.io/en/stable/
https://gplearn.readthedocs.io/en/stable/
https://pyswarms.readthedocs.io/en/latest/index.html
https://pyswarms.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1016/j.swevo.2019.100598
https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus
http://dx.doi.org/10.1016/j.camwa.2020.02.010
https://developers.google.com/optimization
http://dx.doi.org/10.1007/978-0-387-74759-0_367
http://dx.doi.org/10.1007/s101070100244
http://dx.doi.org/10.1109/CEC.2017.7969450

Appl. Sci. 2021, 11, 4774 33 of 34

20. Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization. Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Tech. Rep.
Nanyang Technol. Univ. Singap. 2014, 635, 490.

21. GEATbx-Genetic and Evolutionary Algorithms Toolbox in Matlab-Main Page. Available online: http://www.geatbx.com.
(accessed on 16 February 2021).

22. Applegate, D.L.; Bixby, R.E.; Chvatal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics); Princeton University Press: St. Princeton, NJ, USA, 2007.

23. Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990.
24. Kitzelmann, E.; Schmid, U. Inductive Synthesis of Functional Programs: An Explanation Based Generalization Approach. J. Mach.

Learn. Res. 2006, 7, 429–454.
25. Schmid, U. Inductive Synthesis of Functional Programs, Universal Planning, Folding of Finite Programs, and Schema Abstraction by

Analogical Reasoning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 2654, [CrossRef]
26. Castelli, M.; Silva, S.; Vanneschi, L. A C++ framework for geometric semantic genetic programming. Genet. Program.

Evolvable Mach. 2014, 16, 73–81. [CrossRef]
27. PyTorch, an Open Source Machine Learning Framework that Accelerates the Path from Research Prototyping to Production

Deployment. Available online: https://pytorch.org/ (accessed on 16 April 2021).
28. Joblib: Running Python Functions as Pipeline Jobs. Available online: https://joblib.readthedocs.io/en/latest/ (accessed on 16

April 2021).
29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
30. Mitchell, T.M. Machine Learning, 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1997.
31. Hoos, H.; Sttzle, T. Stochastic Local Search: Foundations & Applications; Morgan Kaufmann Publishers Inc.: San Francisco, CA,

USA, 2004.
32. Gonçalves, I.; Silva, S.; Fonseca, C.M. Semantic Learning Machine: A Feedforward Neural Network Construction Algorithm

Inspired by Geometric Semantic Genetic Programming. In Progress in Artificial Intelligence; Pereira, F., Machado, P., Costa, E.,
Cardoso, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 280–285.

33. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

34. Darwin, C. On the Origins of Species by Means of Natural Selection; Murray: London, UK, 1859.
35. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
36. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,

USA, 1992.
37. Vanneschi, L.; Poli, R. Genetic Programming—Introduction, Applications, Theory and Open Issues. In Handbook of Natural

Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 709–739. [CrossRef]
38. Moraglio, A.; Krawiec, K.; Johnson, C.G. Geometric semantic genetic programming. In International Conference on Parallel Problem

Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–31.
39. Vanneschi, L.; Castelli, M.; Silva, S. A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 2014,

15, 195–214. [CrossRef]
40. Vanneschi, L.; Silva, S.; Castelli, M.; Manzoni, L. Geometric semantic genetic programming for real life applications. In Genetic

Programming Theory and Practice xi; Springer: Berlin/Heidelberg, Germany, 2014; pp. 191–209.
41. Castelli, M.; Vanneschi, L.; Popovič, A. Parameter evaluation of geometric semantic genetic programming in pharmacokinetics.

Int. J. Bio Inspired Comput. 2016, 8, 42–50. [CrossRef]
42. Bartashevich, P.; Bakurov, I.; Mostaghim, S.; Vanneschi, L. PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector

Fields via Genetic Programming. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 41–53.

43. Bakurov, I.; Castelli, M.; Vanneschi, L.; Freitas, M. Supporting medical decisions for treating rare diseases through genetic
programming. In Applications of Evolutionary Computation; Kaufmann, P., Castillo, P., Eds.; Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2019; pp. 187–203. [CrossRef]

44. Vanneschi, L. An Introduction to Geometric Semantic Genetic Programming. In NEO 2015; Springer: Berlin/Heidelberg,
Germany, 2017; Volume 663, pp. 3–42. [CrossRef]

45. Castelli, M.; Castaldi, D.; Giordani, I.; Silva, S.; Vanneschi, L.; Archetti, F.; Maccagnola, D. An efficient implementation of
geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In Portuguese Conference on
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; pp. 78–89.

46. Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous
Spaces. Tech. Rep. TR-95-012 ICSI 1995, 23, 341–359.

47. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the Proceedings of North American
Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [CrossRef]

http://www.geatbx.com
http://dx.doi.org/10.1007/b12055
http://dx.doi.org/10.1007/s10710-014-9218-0
https://pytorch.org/
https://joblib.readthedocs.io/en/latest/
http://dx.doi.org/10.1007/978-3-540-92910-9_24
http://dx.doi.org/10.1007/s10710-013-9210-0
http://dx.doi.org/10.1504/IJBIC.2016.074634
http://dx.doi.org/10.1007/978-3-030-16692-2_13
http://dx.doi.org/10.1007/978-3-319-44003-3_1
http://dx.doi.org/10.1109/NAFIPS.1996.534789

Appl. Sci. 2021, 11, 4774 34 of 34

48. Guo, S.M.; Yang, C.C.; Hsu, P.H.; Tsai, J.S.H. Improving Differential Evolution With a Successful-Parent-Selecting Framework.
IEEE Trans. Evol. Comput. 2015, 19, 717–730. [CrossRef]

49. Eltaeib, T.; Mahmood, A. Differential Evolution: A Survey and Analysis. Appl. Sci. 2018, 8, 1945. [CrossRef]
50. Das, S.; Suganthan, P. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [CrossRef]
51. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
52. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on

Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage,
AK, USA, 4–9 May 1998; pp. 69–73.

53. Kennedy, J.; Eberhart, R.C. Swarm Intelligence; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001.
54. Carlisle, A.; Dozier, G. An off-the-shelf pso. In Proceedings of the Workshop on Particle Swarm Optimization, Purdue School of

Engineering and Technology, Indianapolis, IN, USA, 6–7 April 2001.
55. Mussi, L.; Cagnoni, S.; Daolio, F. Empirical assessment of the effects of update synchronization in Particle Swarm Optimization.

In Proceedings of the 2009 AI*IA Workshop on Complexity, Evolution and Emergent Intelligence, Reggio Emilia, Italy, 9–12
December 2009; pp. 1–10.

56. Rada-Vilela, J.; Zhang, M.; Seah, W. A Performance Study on Synchronous and Asynchronous Updates in Particle Swarm
Optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16
July 2011; ACM: New York, NY, USA, 2011; pp. 21–28.

57. Vanneschi, L.; Bakurov, I.; Castelli, M. An initialization technique for geometric semantic GP based on demes evolution and
despeciation. In Proceedings of the Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 113–120.

58. Bakurov, I.; Vanneschi, L.; Castelli, M.; Fontanella, F. EDDA-V2–An Improvement of the Evolutionary Demes Despeciation
Algorithm. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 185–196.

59. Moraglio, A. Towards a Geometric Unification of Evolutionary Algorithms. Ph.D. Thesis, Department of Computer Science—
University of Essex, Colchester, UK, 2007.

60. Bajpai, P.; Kumar, M. Genetic Algorithm—An Approach to Solve Global Optimization Problems. Indian J. Comput. Sci. Eng. 2010,
1, 199–206.

61. Mühlenbein, H.; Schomisch, M.; Born, J. The parallel genetic algorithm as function optimizer. Parallel Comput. 1991, 17, 619–632.
[CrossRef]

62. Traveling Salesman Problem|OR-Tools|Google Developers. Available online: https://developers.google.com/optimization/r
outing/tsp (accessed on 16 February 2021).

63. Harrison, D.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102.
[CrossRef]

http://dx.doi.org/10.1109/TEVC.2014.2375933
http://dx.doi.org/10.3390/app8101945
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/S0167-8191(05)80052-3
https://developers.google.com/optimization/routing/tsp
https://developers.google.com/optimization/routing/tsp
http://dx.doi.org/10.1016/0095-0696(78)90006-2

	Introduction
	Optimization Problems
	Continuous Optimization Problems
	Combinatorial Optimization Problems
	The Traveling Salesman Problem
	Knapsack

	Supervised Machine Learning Problems (Approached from the Perspective of Inductive Programming)

	Iterative Search Algorithms
	Random Search
	Local Search
	Hill Climbing (HC)
	Simulated Annealing (SA)

	Population-Based Algorithms
	Genetic Algorithms (GAs)
	Genetic Programming (GP)
	Geometric Semantic Genetic Programming (GSGP)
	Differential Evolution (DE)
	Particle Swarm Optimization

	Operators
	Initialization
	Selection
	Variation Functions

	Solutions
	Conclusions
	Creating Problem Instances
	Creating an Instance of Box
	Creating an Instance of TSP
	Creating Instances of Knapsack01 and KnapsackBounded
	Creating an Instance of SML

	Algorithm Creation and Applications for Problem-Solving
	Applying Random Search
	Applying Local Search
	Applying Genetic Algorithms
	Applying GSGP
	Reconstructing Trees after GSGP
	Applying Differential Evolution
	Applying Particle Swarm Optimization

	References

