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ABSTRACT

Pattern matching, also known as template matching, is a computationally intensive problem aimed at localizing
the instances of a given template within a query image. In this work we present a fast technique for template
matching, able to use histogram-based similarity measures on complex descriptors. In particular we will focus on
Color Histograms (CH), Histograms of Oriented Gradients (HOG), and Bag of visual Words histograms (BOW).
The image is compared with the template via histogram-matching exploiting integral histograms. In order
to introduce spatial information, template and candidates are divided into sub-regions, and multiple descriptor
sizes are computed. The proposed solution is compared with the Full-Search-equivalent Incremental Dissimilarity
Approximations, a state of the art approach, in terms of both accuracy and execution time on different standard
datasets.

Keywords: Template matching, Color Histograms, Histograms of Oriented Gradients, Bag of Words, Integral
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1. INTRODUCTION

Pattern matching, also known as template matching, is a computationally intensive problem aimed at localizing
the instances of a given template T within a query image I. Pattern matching founds numerous applications in
signal processing, computer vision, and image and video processing domains: product quality control,1 image
compression,2 object detection,3 block matching in motion estimation,4 image denoising,5 and action recogni-
tion.6 The easiest pattern matching algorithm is the Full Search (FS) which relies on calculating at each position
of the image I a similarity or dissimilarity score between the template T and the current image sub-window
under analysis, also called candidate. Once the similarity has been computed for all candidates, a threshold
is adopted to classify the candidates into matching patterns and mismatching ones. Numerous exhaustive Full
Search equivalent techniques have been recently proposed to speed-up template matching on grayscale images,7

and also on multi-channel images.8 Most of these techniques use pixel-based functions such as Lp norm or
correlation as the similarity measure.

In this work we present a fast technique for template matching, able to use histogram-based similarity
measures. In particular we will focus on Color Histograms (CH), Histograms of Oriented Gradients (HOG),9

and Bag of visual Words (BOW).10 To obtain a BOW description of an image, we compute Scale-Invariant
Feature Transform (SIFT)11 and the resulting descriptors are vector quantized using a k-entry codebook of
visual word prototypes. Although with very different meanings, the output of the three representations is an
indexed image, where for the case of Color Histograms each index corresponds to a different quantized color in
the color space used. For the HOG representation, each index corresponds to a different quantized edge direction.
For the BOW representation each index corresponds to a different feature prototype. The performances of our
method (applied to different descriptors) are compared with those of the Incremental Dissimilarity Approximation
algorithm (IDA),12 a full-search-equivalent method for template matching based on the Lp norm in terms of both
accuracy and execution time on different standard datasets.

2. THE PROPOSED METHOD

The proposed method is structured in two main parts: image and template description, and the actual search of
the template in the image.
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2.1 Image and Template Description

The first part consists in applying the chosen descriptor (CH, HOG, or BOW) to two dense grids over both the
image and the template. The choice of grid-cell size is arbitrary. The size of the second grid-cell size if twice the
first one.

The original w × h image is then represented with two grids of d-unit-long descriptors (for example d = 128
in the case that the SIFT descriptor is used). The next step is the quantization of the descriptors themselves.
For this purpose a vocabulary of word prototypes is needed, which can be created as follows:

� Extraction of the chosen descriptors from a set of suitable images (see Sec. 3.1).

� Clustering of the descriptors. The chosen implementation is based on Euclidean distance, complete linkage.
Each cluster is then represented by its median.

� Creation of a data structure for the median descriptors to facilitate the subsequent search. An efficient
tool for this purpose is the k-dimensional tree,13 for which the VLFeat14 implementation has been used.

After the creation of the vocabulary, which may be executed every time on the searched template, or once
and for all on a training set of images, it is possible to find for each descriptor in the image and template the
most similar one from the vocabulary, assigning it the corresponding index. This may be seen as the search for
the nearest point in a k-dimensional space, and is in fact efficiently performed by applying a nearest neighbor
search to the k-dimensional tree created.15

2.2 Search of the Template in the Image

The search of the template in the image is done with a sliding window of the same size of the template. For each
location (x, y) of the top-left corner of the sliding window over the image (i.e. for each candidate match), the
histogram of indexes is calculated and compared with that of the template. In order to add spatial information
to histogram-based representations, both the template and candidate matches are partitioned into sub-regions.

Integral histograms16 have been adopted to increase the computational efficiency of the histograms. An
integral histogram IH is the natural extension of the concept of integral image17 to histograms, and consists in
a 3-dimensional structure with height and width equal to those of the original image I, and depth equal to the
cardinality of the vocabulary of descriptors used. For each location with row and column indexes (x, y) in the
IH structure, the following identity holds along the third dimension:

IH(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) (1)

From the IH structure it is possible to compute the histogram h of any rectangular region with vertices
ABCD with a constant-time operation:

∑
xA<x′≤xC

yA<y′≤yC

h(x′, y′) = IH(C) + IH(A)− IH(B)− IH(D) (2)

Where + and − are bin-wise operations, and histogram normalization is performed after the algebraic sum
of the four histograms.

The population of the IH structure can be done efficiently starting from the histogram of the first pixel
(1, 1), and progressively building the nearby histograms by adding one single index to one single bin for each
movement:

IH (x, y) = h(x, y) + IH(x− 1, y) + IH(x, y − 1)− IH(x− 1, y − 1) (3)
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Since the descriptors extraction uses two different sizes, two matrices of indexes for every image are created.
To manage this extra information we sum sum the integral histograms of the two matrices.

Now, for each position of the sliding window over the image, the portion it covers is split into the specified
number of sub-regions, and each ith sub-region is compared with the corresponding sub-region of the template by
applying a sum of square differences of the histogram bins. The sum of the distances relative to the sub-regions in
the current candidate is then compared with a specified threshold, in order to determine if rejecting or accepting
the match. Another possible strategy is to discard a candidate whenever the distance of two corresponding
sub-regions exceeds a specified value. The choice made here makes the search more tolerant towards occlusions,
by accepting a candidate with some regions very different to the corresponding ones in the template as long as
the others are very similar.

3. EXPERIMENTAL RESULTS

The performances of our method are compared with those of the Incremental Dissimilarity Approximation
algorithm (IDA),12 a full-search-equivalent method for template matching based on the Lp norm. IDA involves
the use of two dissimilarity measures (or “distances”) between template T and candidate region Is (x, y), and
divides them into sub-regions to speed up the search. Let δ be the first distance, which is computationally
expensive:

δp (x, y) = ‖Is (x, y)− T‖pp (4)

And let β be the second distance, which is far quicker than the first one:

βp (x, y) =
∣∣∣‖Is (x, y)‖p − ‖T‖p

∣∣∣p (5)

where ‖·‖p is the Lp norm:

‖x‖p =
(∑

|xi|p
) 1

p

(6)

The authors have shown12 that the less expensive distance β is always a lower bound of the distance δ. So,
for each candidate, they first compute the partial distances β′ for each pair of corresponding sub-regions, which
once summed up result in the value β for the whole template-candidate pair. Then, knowing that β ≤ δ, if β
exceeds a given threshold then the candidate will certainly have to be discarded. If, instead, the distance β does
not exceed the threshold, they compute the more expensive partial distance δ′ on the first sub-region, and use it
in the sum of partial distances along with the less expensive one of the other sub-regions. Iteratively, this value
is compared with the given threshold, and if the condition holds (i.e. the distance is lower than the threshold)
the expensive distance on the next sub-region is computed and substituted. A candidate is accepted when the
expensive distance δ has been calculated on every sub-region and is below the given threshold.

The computational cost of the template search is highly dependent on the nature of the image itself: when
false instances are very similar to the template, the rejection of the candidate typically occurs in the latest
substitutions thus requiring the computation of the expensive distance on many sub-regions. When false instances
are extremely different with respect to the template, they will be discarded during the first substitutions, without
the need of computing the expensive distance on many sub-regions.

Three variants of our method (CH, HOG, and BOW), with the number of sub-regions set to three, are
compared against the Full-Search-equivalent IDA algorithm for both accuracy and computational time. The
tests are performed on the three standard datasets used by Tombari et al.:18

1. Guitar
Seven 63× 63 color templates extracted from a good quality picture are searched for in 10 variants of the
scene (640× 480) shot under different lighting conditions.
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Figure 1. One example image from each dataset, with the searched templates highlighted

Figure 2. Scene variability within the three datasets

2. Mere Poulard - Illumination Changes
One 85×53 color template is searched for in 12 variants of a scene (640×480) shot under different lighting
conditions.

3. Mere Poulard - Occlusions
One 85× 53 color template is searched for in 8 variants of the same scene (640× 480) with different levels
of occlusions of the template instance in the image.

The code was written in MATLAB (release 2012a) and supported with C++ libraries. Tests have been
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Guitar M.P. A M.P. B Total
IDA 19/70 0/12 0/8 19/90
CH 10/70 1/12 2/8 13/90

BOW 54/70 5/12 2/8 61/90
HOG 34/70 2/12 4/8 40/90

Guitar M.P. A M.P. B Total
IDA 19/70 0/12 0/8 19/90
CH 14/70 0/12 0/8 14/90

BOW 55/70 4/12 5/8 64/90
HOG 23/70 2/12 2/8 27/90

Table 1. Results with ad-hoc (left) and default (right) vocabularies, for the three datasets

Guitar Mere P. A Mere P. B

IDA
vocab <0.0001s (<0.0001s) <0.0001s (<0.0001s) <0.0001s (<0.0001s)

template 0.0010s (0.0010s) 0.0008s (0.0006s) 0.0006s (0.0001s)

total 0.0010s 0.0008s 0.0006s

CH
vocab 0.0395s (0.0056s) 0.0438s (<0.0001s) 0.0478s (<0.0001s)

template 0.0174s (0.0180s) 0.0163s (0.0024s) 0.0154s (0.0007s)

total 0.0569s 0.0601s 0.0632s

BOW
vocab 0.0621s (0.0034s) 0.0759s (<0.0001s) 0.0776s (<0.0001s)

template 0.0251s (0.0075s) 0.0253s (0.0018s) 0.0250s (0.0017s)

total 0.0872s 0.1012s 0.1026s

HOG
vocab 0.0452s (0.0005s) 0.0526s (<0.0001s) 0.0541s (<0.0001s)

template 0.0164s (0.0026s) 0.0179s (0.0015s) 0.0176s (0.0013s)

total 0.0616s 0.0705s 0.0717 s
Table 2. Average offline times (and standard deviations in brackets) for the three datasets, expressed in seconds

performed on the following hardware: Operating System: Microsoft Windows 7; CPU: Intel Core2 Duo Processor
E6750, 4M Cache, 2.66 GHz, 1333 MHz FSB; RAM: 2.00GB.

3.1 Recognition Accuracy

Tests have been performed with both ad-hoc vocabularies, built on-the-fly from each template, and with a default
one, built only once from the whole dataset.

For each template-image pair, the output of every investigated method is counted as valid when at least 50%
of the bounding box intersects the ground truth provided.

As can be seen in Table 1, among the three variants proposed, the BOW and HOG ones outperform the
IDA method, with the BOW-based variant producing the overall best results. The CH-based variant instead,
produces the overall worst results. For what concerns the choice of vocabulary, the main difference lies in the
HOG variant, with a total score of 40/90 for the ad-hoc vocabularies against 27/90 with the use of a default one.

3.2 Computational performances

Computational time has been split into offline and online.
For the proposed method, offline time refers to vocabulary generation (supposing the creation of one vocabulary
from each template) and template description. For the IDA algorithm offline time is basically null, since little or
no precomputation is required. Online time involves image description (when required) and the template search
itself.

Offline time shows how the use of a descriptor-based representation introduces an additional computational
burden (see Figure 3 and Table 2). On the other hand, online times with the proposed method are on average
better than those obtained with the already time-efficient IDA, and more predictable, as can be seen from the
standard deviation values in Table 3 and observed the graphs in Figure 4.

For what concerns the time-performances, the new method asks for some precomputation that is not required
by the IDA algorithm, but outperforms it with average lower online times (composed of the image transformation
and the search of the template in the image). The total time required by the HOG-variant is thus on average
56.7% less that that required by IDA, while that required by the BOW-variant is on average 39.6% less.
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Figure 3. Offline times for the three datasets

Guitar Mere P. A Mere P. B

IDA
image 0.3005s (0.0309s) 0.3234s (0.0565s) 0.2989s (0.0201s)

search 6.1291s (3.5575s) 4.8632s (2.7816s) 4.0519s (2.7730s)

total 6.4296s 5.1866s 4.3508s

CH
image 1.1076s (0.1202s) 1.0673s (0.0224s) 1.0489s (0.0188s)

search 0.5648s (0.0123s) 0.5852s (0.1326s) 0.5453s (0.0039s)

total 1.6724s 1.6524s 1.5943s

BOW
image 2.5548s (0.0857s) 2.6101s (0.0534s) 2.5365s (0.0364s)

search 0.5549s (0.0121s) 0.5469s (0.0100s) 0.5424s (0.0036s)

total 3.1097s 3.1571s 3.0790s

HOG
image 1.6523s (0.0294s) 1.7075s (0.1951s) 1.6817s (0.1555s)

search 0.5723s (0.0716s) 0.5497s (0.0073s) 0.5464s (0.0055s)

total 2.2246s 2.2572s 2.2281s
Table 3. Average online times (and standard deviations in brackets) for the three datasets, expressed in seconds
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Figure 4. Online times for the three datasets
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4. CONCLUSIONS

In this work we have presented a novel technique for template matching, able to use histogram-based similarity
measures. Among the possible histogram descriptors, we have focused on Color Histograms (CH), Histograms
of Oriented Gradients (HOG), and Bag of visual Words histograms (BOW). The proposed method has been
compared with a fast Full-Search equivalent method based on the Lp norm7 on different datasets. The exper-
imental results showed that the proposed method using HOG and BOW descriptors proves to be more robust
and efficient than the IDA algorithm.

Further development may include the ability to better generalize the search with the use of multiple templates
depicting the same object, together with the design of a strategy to make the proposed method more robust
with respect to scale and rotation changes.
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